
LOCALITY OF SOLVABLE SUBGROUP-CLOSED FITTING CLASSES 

N. T. Vorob'ev 

Most of the known results in the theory of formations of finite groups are concerned 
with ioc91 formations (cf. monograph [i] and [2]). In this connection, Professor L. A. 
Shemetko v suggested that I study the dual problem - the problem of defining and investigat- 
ing analogs of local formations in the theory of Fitting classes, that is~ classeg of finite 
groups that are closed under passage to normal subgroups and products of normal subgroups. 
The first attempts to define local solvable Fitting classes (though the definitions were 
differen t ) were made by Hartley [3] and D'Arcy [4], who were studying properties of injectors. 
The present author, using Shemetkov's notion of a local group function [i], obtained the 
first results concerning the construction and investigation of local Fitting classes [5, 6]. 
It turne d out that many familiar classes of groups are local Fitting classes. In particular, 
I have shoran [5, 6] that the subgroup-closed classes of groups 9~. ~. ~, ~. are local Fit- 
ting classes. In this paper a very large set of local Fitting classes will be indicated. 
To be precise: 

THEOREM. Every nonempty solvable subgroup-closed Fitting class is local. 
i 

Let ~ and ~ be Fitting classes. Then their product ~ is the class of all groups G~ 
such that, G/G~ ~ where G~ is the ~-radical of G [2]. 

It is well known that the product of Fitting classes is associative [7]. 

If there exists a local group function f [i], such that, f(p) is a Fitting class for 
all primes p, we will say that ~ is a local Fitting class [6] if ~=@~i~(.,~,[~,:,~:~ i 

In that case we call f a radical function of ~] . If ~ = e, we put ~s=~ In all other no- 
tations and definitions we follow Shemetkov's monograph [i] and book [2]. In all cases we 
consider only finite groups~ and in the theorem - finite solvable groups. 

LEMM i. If N is a Fitting class and {~,!i~f} a set of Fitting classes~ then 

The proof is accomplished by a direct check. 

We Call a product of Fitting classes ~@ local if ~ is a local Fitting class. 

L___~2. Let ~, ~ be sets of primes and ~=~, '~=(~. Then the product of Fitting cla:~ses 
@@ is 10ca~? with a radical function f, such that, 

In particular , 

{ ~ ' r  if p ~ o J , ,  

Proof. Let ~ be a Fitting class with the above radical function f and let o = ~ U w.  

Then ~=~C!(Ci~f(p~ ~@~,). In view of the definition of f, we get 

But then by Lemma 1 
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Consequently, again applying Lemma i, we obtain 

~=r 

This proves the lemma. 

Following Shemetkov [i], we define a partial order on the set ~ of radical functions, 
as follows: fk 5 f~ if and only if fk(P) E fs for all primes P(fk, f~ e fl). 

LEMMA 3. The intersection of any nonempty set of local Fitting classes is a local Fit- 
ting class. 

Proof. Let ~=!],~ where ~ is a Fitting class with radical function fi, i e I. 

Construct the group function f=]~, For any i e I and any group G # i, we have fi(G) = 

npe~(G)fi(p); hence 

for all primes p e ~(G). Consequently, f is a radical function. We claim that f locally 
determines ~. Let ~ = ~(@) and 

Since f 2 fi for any i e I, it clearly follows that ~. Let G be a group in ~. Then 
G/Gfi(p ) ~N~G~ for every i e I, p e ~. Consequently, G/~,~G.~ ~,~N~. ~ But flieiGfi(p) = 

Gf(p). Thus, G e f(p)~,@~ for all primes p e ~. In addition, G~ . Consequently, 

This proves the lemma. 

The next lemma gives one possible way to construct local products of Fitting classes 
and is of independent interest. 

LEMMA 4. Every finite product of Fitting classes ~= |],~, ~.(~2) where ~'=~i for 

some set of primes ~i, is local. 

Proof. We prove the lemma by induction on the number of factors n. If n = 2 the asser- 
tion is true by Lemma 2. 

Suppose now that n > 2 and that all products of length less than n are local. Let @ = 

|Ii'~. Then, by the associativity of multiplication of Fitting classes (see [5, Lemma i]) 

and by Lemma 2, 

where ~n-i = ~, ~n = ~, o = ~ U ~. Consequently, by Lemma i, ~=~r162162162 where 

Y=$@~, But @~,, is a product of length n - i, and therefore it is local by induction, and 
the products ~@. and ~ @ ~ ,  are local by Corollary 2 to the theorem of [6]. Thus, 

is a local product by Lemma 3. 

This completes the proof. 

Let Fit s denote the Fitting class generated by a set of groups ~ [5]. Following [i], 
we call a radical function f of a class ~ internal if f(p) E ~ and complete if f(p) = 
f(p) ~ for all primes p. 

LEMMA 5. The following assertions are true: 

I) Every local Fitting class ~ has a unique minimal complete radical function f, such 
that, for any prime p e ~(~), 

/(~) =Fit  {G~IG~H~.~" (H~) }~; 

2) if 9. ~ are Fitting classes with minimal complete radical functions f, h, respec- 
tively, then ~@ if and only if f 5 h. 
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Proof. Let ~ be the set of all complete radical functions of a local Fitting class 3. 
Obviously, ~ ~ ~ . Let ~ be an arbitrary element of ~. Then ~=~,%?(N~ ~(p). ~ ). 

Let ~(P) denote the set of groups 

{G~3IG~v-~H~%' ( H ~ )  }, P ~ ( 3 ) .  

If G e ~(p), then G~-H ~p~ for some groups H~3 . Since H e 3 , it follows that G~m 

H~%~(p), and therefore G~!IP))9~=k~(P), Thus, for every prime p e ~(3), we have 'P(p) c_ 

~(p). Consequently, ](P)=(Fit~(~P))9~=-(Fit~(P))~=~(P) for all p in ~(3). Thus, f <~ ~ and 

'N=~(~&(fi .... ~ a ~ / ( p ) ~ .  )--3. 

We now prove that 3~. Let X e ~ . Since by [5, Len~na i] (X~v)~p=X ~p%" (~(i~)) it 

follows that X~/~(p)~/(p). Consequently, X~/(p)~, for all primes p e ~( 3 ). In addi- 

tion, X ~ ( g ~ ,  Thus, X~.~%A(N~.(~#(p)~,~,)=~. 
2) if f ~ h, then obviously 3~@. Let ~=--~. But then, by part 1 of the lenmaa and the 

definition of the operation Fit, we immediately obtain f 5 h. 

This completes the proof of the lemma. 

Any set (3~[i~I} of local Fitting classes will now be considered partially ordered ~ by 
the inclusion relation ~. 

LEMMA 6__ u. The union of any nonempty chain of local Fitting classes is a local Fftting 
class. 

Proof. Let {3ili~l} be a chain of local Fitting classes and let 3=U~3~. Obvious ly,~ 3 
is a Fitting class. We must prove that 3 is local. By Lemma 5, for each i e I the Fittiag 
class 3~ has a unique minimal complete radical function fi" Let ~ = {fill �9 I} be the chain 
of these functions and define f = Uieif i. We first show that f is a radical functi~on~ That 
f(p) is a Fitting class for all primes p is obvious. We now show that for any group G # 1 
we have f(G) = flpf(p), where p runs through all prime divisors of ~(G). Since f(G) = 

Uieifi(G) and for any i e I and p e z(G) we have fi(G) = flpfi(P), it follows that f6G) 

Opf(p). We now verify the reverse inclusion. Let IG[ = p1~Zp2~2...pk ~k and X e 

Np(Uieifi(p)). Then X e (Uies N (UieIfi(p2)) N ... N (Uielfi(Pk)). Consequently, 

X e fil(},l) N fi2(p2) fl ... n fik(Pk) for some ii, ia, .... i k e I. We may assume without 

loss of generality that fi~ ~ fi 2 ! ''' ! fik" Thus, X e fik(Pz) fl fik(P=) N ... N fik(Pk)- 

Consequently, X e flpfik(P ) ~ Uiei(Npfi(p)). Thus, Npf(p) ! f(G) and f is a radical function. 

It remains to verify that f is a radical function of ~. Let ~=~(~)N(N~(~/(p)~,). 

Since fi~ f, we have ~. Let L be a group in ~. Then 6~sv~f(P) for all primes p e 

~( ~ ). But f(p) = Uieifi(p). Consequently, there exists is e I, such that, L~%'~f~ (p) for 
i 

all primes p e ~(3). Thus, L~ ~ v~=(~)/~e(p)~p~v. Since L~=(~ it follows that L~=(3~,~) 

for somei m e I. The fact that ~m and 3~t are elements of a chain implies that either 

3~ m ~3q or ~q ~6~. But then either ~=(~m)~___~=(~ie ) or ~=~)~@=(~m) and by Lemma 5 

< fis or fis < rim" In either case, it is easy to see that L e 3 Thus, ~=3. either f m - - 

This proves the lemma. 
1 

In ~he following proof of the theorem we will need the concept of a solvable primitive 
saturated formation [8], which we now recall. Let ~0 be the family of formations consisting 
of the formations Z ~, ~. For any i > 0, we define a family of formations ~'~ inductively, 
as follows: ~-~ if and only if either 3~-~-, or ~ is a formation with local screen f 

! 

such tha~ f(p)~'~_, for all primes p. Let ~- be the family of all formations 3, such that, 

~=U~, ~here ~U~9"~ and ~+~. We call a formation ~ primitive if ~r 

ProOf of the Theorem. Let ~ be a solvable subgroup-closed Fitting class. Then by [9, 
Theorem ~.I], ~ is a formation. But by [8, Theorems I, 4], any subgroup-closed radical for- 
mation is I primitive saturated. There are now two possibilities with regard to ~. 
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i. ~ for some natural number k, i.e., ~ has bounded nilpotent length. In that 
case, by [i0, Lemma 2.3], ~=n~=1~ where each Fitting class ~ is a product of Fitting 

classes of finite length of the form ~, ~ ...... ,~ where ~i, ~2 .... , ~n are sets of 
primes. Consequently, by Lemma 4, ~ is a local Fitting class for any i e I, and therefore, 
by Lemma 3, ~ is local. 

2. The nilpotent length of ~ is unbounded. Let ~=~n~ ~ where i ~ i. It is easy to 
see that ~ is a subgroup-closed Fitting class of bounded nilpotent length for every i ~ I. 
Consequently, ~ is a local Fitting class for all i >_ i, by case i. But then ~ ----U =~=I~ ~ is 

the union of a chain of local Fitting classes, so that ~ is local by Lemma 6. 

This completes the proof. 

COROLLARY I. If ~, ~ are nonempty solvable subgroup-closed Fitting classes, then their 
product ~$ and intersection ~A@ are local. 

An important problem in the theory of solvable Fitting classes is concerned with the 
description of Fitting classes that satisfy Lockett's condition ~=~*fl~ where ~=fl{~l~*= 
~*}, ~,  is a minimal normal Fitting class and ~*={G~I(GXG)~=(G~XG~)<g~g-~)Ig~G} (see, 
e.g., [i0]). It was shown in [6] that every solvable local Fitting class $~ satisfies 
Lockett's condition. Arguments analogous to those used in [6] will show that any solvable 
local class is a Fitting class with Lockett's condition. Therefore, in view of this obser- 
vation and the theorem, we obtain a concrete realization of the main results of [6]: 

COROLLARY 2. Every nonempty solvable subgroup-closed Fitting class is a Fitting class 
with Lockett's condition. 

COROLLARY 3. If {~I~/} is a set of nonempty solvable subgroup-closed Fitting classes, 
then ~ = ~  is a Fitting class with Lockett's condition. 

Corollary 2 implies a positive solution to Problem 8.30 of [ii] for the case of subgroup- 
closed Fitting classes. 

The first definition of solvable local Fitting classes is due to Hartley [3], who pro- 
posed to define them as classes ~f(p)~,N~ where f is some radical function. However, even 

for $ = ~  it was proved in [3, See. 4.2] that ~ is a subgroup-closed Fitting class but 
not local in the sense of Hartley's condition. We have now eliminated these difficulties: 
it is clear that every local Fitting class in the sense of Hartley's definition is local in 
our sense. In particular, the products ~=~, and ~=~.~ are local, by Lemma 2. 

In conclusion, we note that the dual of our theorem in the formation theory of finite 
groups is false. For example, the solvable formations ~, ~ are subgroup-closed, but not 
local (see [7]). Our theorem in its full generality cannot be inverted: if I is a solvable 
Fitting class that is not subgroup-closed, then it is easy to see that the product ~N is a 
local Fitting class but it is not subgroup-closed. 
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ALMOST LOCALLY REPRESENTABLE VARIETIES OF LIE ALGEBRAS 

M. V. Zaitsev 

In the theory of algebras with identity relations an important role is played by vari- 
eties extremal in relation to some property. 

It is said that a variety @ almost possesses some property P if any proper subvariety 
of it poissesses the indicated property, but ~ itself does not belong to the n~nber of vari- 
eties de!fined by the property P. 

Of greatest interest are the situations when the set of varieties minimal in relation 
to the giiven property proves to be finite. It is known, for example, that any variety of 
Lie algebras generated by a finite algebra will be Cross [i]. At the same time, over any 
finite field there exists a unique almost Cross solvable variety of Lie algebras [2]. In 
the case i of a null characteristic of the ground field let us note examples of the smallest 
variety of Lie algebras in which not any standard identity is satisfied (see [3, 4]), and 
also fou r solvable varieties of almost polynomial growth [5]. 

Let us recall that a variety of Lie algebras ~ on a field ~ is called locally repre- 
sentable i if any finitely-generated algebra from ~ is representable, that is, imbeddable in 
a finite~dimensional algebra over some extension of the ground field ~. The class of locally 
represens varieties of Lie algebras is quite wide (see [6]). Such, for example, are all 
varieties ~.~ over an arbitrary field. Here ~ is an abelian variety, ~ is the vari- 
ety of Lie algebras of nilpotent degree no higher than c. 

The goal of the note is to show that over a field of null characteristic there exist 
only twoiaimost locally representable varieties of Lie algebras, and over an infinite field 
of positive characteristic - one. 

Letlus introduce the necessary notation. We will write the left-normalized product 
[[...[x1~ x 2] .... ], x n] without brackets xlx2...x n. If x2 = ... = x n = y, then we will de- 
note this same product by xly n. 

Let us denote by ~ the centrally metabelian variety of Lie algebras over the field 
~, that is,, the variety defined by the identity 

(x,x~) ( z , x j  x ~ o ,  (1) 
Let us: consider yet another variety. Let G be the three-dimensional Heisenberg algebra 

over a field ~ with basis {x, y, z} and multiplication table xy = z, xz = yz = 0. The rep- 
resentation of G is well known on the ring of polynomials #[t], given in the following man- 
ner: xf(t) = f'(t); yf(t) = tf(t); zf(t) = f(t) (f(t) e r Considering ~[t] as a G- 
module, one can construct the semidirect product G A ~[t], which is the Lie algebra lying in 
the variety ~2. Let us denote by ~2 the variety generated by the algebra GA~[t].- 

THEOREM. Let ~ be an infinite field and ~ be an almost locally representable variety 
of ~-Lieialgebras. 

a) If char~ > 2, then ~=~,. 

b) If char ~ = 2, then �9 is given by the identity (i) and the family of identities 

x , y ,  . . .  yk (x~x~)  + x 2 y ,  . .  �9 y ~ ( x , x , )  + x , y  . . . .  y ~ ( x , x ~ )  ~ 0  ( 2 )  
( k = t ,  2 . . . .  ), 
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