RADICAL CLASSES OF FINITE GROUPS WITH THE LOCKETT CONDITION

N. T. Vorob'ev

In the theory of radical classes of finite solvable groups (Fitting classes) the follow-
ing is a well-known problem (the Lockett conjecture): can every radical class & be obtained
as intersection of two radical classes §* and X. where §* = {G € 8| (G*); = (G5)* <&, g™ |
g€ G} and X is some normal radical class [1]7

First results on this problem were obtained by Bryce and Cossey [2] who proved that the
Lockett conjecture holds for all radical classes , satisfying T, = &% [N 6, ; here J. =
O{D [ D* = §*} and ¢, is a minimal radical class. A radical class of groups ¥ for which
Fg = ¥* " ¢, is said to satisfy the Lockett condition [3]. Shortly after, an example was
constructed in [4] of a radical class & such that Jx 5= &% [ S ; however, the problem of
describing the radical classes satisfying the Lockett condition remains open (cf. [2, 31).

At present the most general result in this direction is the result of Beidleman and Hauck
{3] which says that radical classes of the form 16,€., M satisfy the Lockett condition.

In [5] the author announced results relating to the study of local radical classes;
these are constructions which are dual to well-known basic objects in the theory of forma-
tions of finite groups, viz. local formations (cf [6, Chap. 1]).

The main result of the present paper is to prove that every local radical class of fi-
nite solvable groups satisfies the Lockett condition. The previously quoted results [3] and
[2] are special cases of our theorem (radical classes of the form %€:8,, X1 are examples
of local classes). From the main result we obtain also an easy positive answer to question
8.30 posed by Lausch in the Kourovska Notebook [7] for the case of local radical classes
(Corollary 2).

If & is a radical class then G; denotes the ¥ -radical of the group G, &9 denotes the
product of the radical classes & and $ , i.e., the class of all groups G for which G/G; & ©
A radical class is called local [5] if there exists a local group function f [6] such that
f(p) is a radical class for all prime numbers p and & = 7,/ (p) 8,8,. 1In this case we will
call £ a radical function of the class ¥ . A radical class 5 is called a Lockett class [1]
if § = §*. Other definitions and notation can be found in [6, 8] and [9] if required. All
groups under consideration are finite and solvable. The following definition is due to L. A.
Shemetkov. '

Definition 1. Let f be a radical function of the class . Then we say that,
1) £ is inner if f(p) & § for all primes p;
2) £ is complete if f(p)®, = f(p) for all primes p.

LEMMA 1. Every local radical class (in the general case of not necessarily solvable
groups) is determined by a complete inner radical function.

Procf. Assume that @ is a local radical class. Then there exists a radical function

f such that & = [,/ (p) 8,8, . We define a radical function ¢ as follows: ¢ (p) = f(p) N &
for every prime p. It is clear that n==7)q (98,8,

Now we define the radical function ¢ such that y(p) = ¢ (p)8,. It is clear that ¥ is
a complete radical function of the class 3. We will now show that ¥ is an inner radical
function. Let G € y(p). Then G/Gy,y, = 6,8, and therefore ¢ ¢ (p)®,8,. Assume now that
q is any prime number different from p. Then @, ¢, and therefore G" € %. It follows

[N

that (G"1)"¢"¢ = ¢ (g9) . Using Theorem 7 of [9] we obtain GY%" =g¢(g). Therefore G.G,, ~
GiG %G, G% % = @8, . We have shown that G = ¢ (p) 6,8, = ¥ .
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The Lemma is established.

Definition 2. Let &. ® be radical classes of groups. By ¥ % we denote the class
of groups defined as follows:

G = Fop if and only if the ¥ -injector of G belongs to 9.

It is easy to see that the class 5 -9 is §, -closed, but in general it is not a radi-
cal class (cf. example 3.2 (b} [10]). The construction of this class of groups is dual to
one known in the theory of formations, namely the formation product of second kind; this has
been studied in {11, 12].

Recall that a radical class_ & is called a Fischer class [1] if Kc He GeF, K<G
and H/K € 6, always implies H € % (p is some prime number).

In the following three lemmas we do not assume that the groups under consideration are
solvable.

LEMMA 2. Every local radical class is a Fischer class.

Proof. Let f be a radical function of the class & and G a group from §F. We will
show that if K is a normal subgroup of G such that K€ Hc G and H/K = 8, for some prime
number q then H = §. It will be sufficient to show that H%»®? = f(p) for all prime num-

bers p., We distinguish two possibilities.
1. p is a prime number different from q.

In this case H/K = 9, and therefore H® < K. Hence K® = H"P and therefore K"."" =
%% | But K € § and therefore H"™". e f(p).

2. p=gqg. Let Hq be a Sylow gq-subgroup of the group H. Then HqK/K is a Sylow g-sub-
group of H/K. Consequently, H = HjK. Since the Sylow g-subgroup Gq of G is contained in
6% and H, is contained in G, we have [Hq, Kl ¢ [’ , K] € 6" nK. Geu, hence G" ¢
G,u)(» ﬁ'xerefore [H,, K] CqK n Gf(q)(ssq == [\v(q)uq = R, It is easy to see that RHq<J KH, = H.
Since RH = f(q) ©,, it follows from H/RHq € @, that H e £(q) 6,8,.. Hence H € Nyf(p) 6,6, =
U

The Lemma is established.

A radical class of groups which is at the same time a homomorph (formation), closed un-
der the operation Extg (cf. also [6, p. 12]1) will be called a saturated radical homomorph
(respectively, a saturated radical formation).

LEMMA 3. If & is some radical class and § a saturated radical homomorph then
§*0 = (39)*.

Proof. We prove first that §*9 & (49)* . Assume the contrary. Now choose in the class
FH N\ (59)* a group G of minimal order. It is clear that G; & G+ Assume that Gz/G;
C @ (G/G3). Since $ is a homomorph it follows from G/Gg* ) that G/G3Gz+/Gx = % . Consequent-
ly, G/Gg® (G/G;) = D and therefore G/Gz = 9.

Thus G = (39)*, which is impossible.

If Gz~/Gz 1is not contained in @ (G/Gz) then G/Gz contains a maximal subgroup M/G;
such that G/Gz = (G+/Gz) (M/Gz) . By Theorem 3.5 1) [13] we have Gg+/Gz = 7 (G/Gz) , hence
MGy <1 GIG; . Tt now follows by induction that M = (39)* . Since F*  (§9)* we have
Gw € (3D)*. Therefore G = Gx»M < (39)* . This contradiction shows that 3*D & (F9H)*

Now we shall prove the reverse inclusion. If G =39 , it follows from the fact that
% is a homomorph that G =§*p . Hence FH & F*H and therefore by Theorem 3.3 c) of [13]
we have (FD)* = (§*9)* . By the definition of the class $* (cf. [1] and [13]) every group
G of $* is a homomorphic image of the group (G X G)», and therefore G=9 . It is therefore
clear that © is a Lockett class, i.e. $ = $* . Moreover, by Theorem 3.3 c) of [13] the
class §* is also a Lockett class. Therefore §*9 is a product of Lockett classes, and it
follows easily from the proof of Lemma 3.1 (b) of [14] that §*D is also a Lockett class.
Hence (FD)* & %9 .

The Lemma is established.

LEMMA 4. Let &, »: be radical classes of groups. Then the following assertions
hold:
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1) if ¥ is a radical homomorph and &; < §2 then &Y & §,%;
2) if ¥ is a radical formation then (&, )X = 5. ¥ 7 F.X

Proof. Let ¥ be a radical homomorph and & & &, Then G/Gs =~ G/G3/G/G; = ¥ and
therefore G = j§,¥%.

By 1) we have (& [ F) ¥ & %X [ &%

If G/Gy, = ¥ then G/(1G; € X. It is clear that [(1G; = Gpg. Therefore G € () F)¥
(i =1, 2). :

The lemma is established.

Definition 3. The radical function f is called a Lockett function if f(p) is a Lockett
class for all prime numbers p.

LEMMA 5. Every local radical class can be defined by a Lockett function. In particular,
every local radical class is a Lockett class.

Proof. Let ¢ be a radical function of the class F. Then & = (¢ (P) §:8,. It is
easy to see that for every prime p the radical class ¢ (p) 6,8, is local. It follows from
Lemma 2 that ¢ (p) &,©, is a Fischer class and thus by Theorem 2.2 d) of {1] it is also a
Lockett class. Now we apply Lemma 3 and find that (9 (p))*€,8, = ¢ (p)&,8, for all primes
p. We now construct the radical function f as follows: f(p) = (¢ (p))* for all primes p.
By Theorem 2.2 b) of [1] f is then a Lockett function locally defining . The fact that 3
is a Lockett class follows immediately from property 2.3 b) in [1].

The lLemma is established.

CORCLLARY. Every local radical class can be defined by a complete inner Lockett func-
tion.

Proof. By Lemma 1 every local radical class ¥ can be defined by a complete inner radi-
cal function ¥ which can be obtained easily from the Lockett function £ (which exists by
Lemma 5), if it is assumed that y(p) = (£f(p) n ¥ &, for all primes p.

Definition 4. Let f be a radical function of the class . The radical class 9 is
said to be closed under f-injectors if $ S f(p) o  for all primes p.

Examples. Let f be an inner radical function of the class §. Then the radical class
» is closed under f-injectors in each of the following cases:

1) £(p) is an S-closed radical class for all primes p, 9 is minimal normal;

2) D= XY where ¥ < /(p) for all primes p, 9 is an S-closed radical class;

3) 927 (p) for all primes por H = F ;
4) £(p) is normal for all primes p, © arbitrary;
5) H is S-closed.

Indeed, in case 1) f(p) is a Fischer class for all primes p, and therefore by Theorem
4.4 of [10] the class ¥ is closed under f-injectors.

We now consider case 2). Let G- 9 and F an f(p)-injector of the group G. Then
GiGxy €Y . But Gy Z_. G,y F , and therefore F/Gy= 9 since the class » is S-closed. By
Theorem 1.1 of [15] the radical class -9 is a formation. Consequently, 5= X9 = . The
cases 3)-5) are trivial.

LEMMA 6. If ¢ is a complete inner radical function of the class % and ® is a radical
class which is closed under y-injectors then & [ D, = (F [ D).

Proof. Since &) 9= 9 it follows from Theorem 3.5 of [2] that (J /) D), = B,. Conse-
quently, (i} (1 D)y S § (1 D4« . Now we prove the reverse inclusion. Let G be a group in ¥
and F a y(p)-injector of the group G where p is a prime. Then F e ¥(p) N D and therefore
Fe §(]9 Then it follows from Lemma 3 and Theorem 2.2 b) of [1] that F € (& 7 D, )™ =
(5 N D)*S, . Hence G =/ (p) =y (p)o (& {2 D)4&,)* . We have thus shown that 9 </ (p).

By Theorem 3.3 in [10] the class f(p) is a radical class. . By Theorem 3 of [3] we there-
fore have the equation

Q(p) S (& \v’)*s/)*_ (i (p) ~ {5, RSN
But then it follows from Theorems 3.5 of [2] and 2.2 b) of [1] that D« &Y (p) < (3 D)€,
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Therefore
Fp) TR SF T DS,
By Lemma 4 1) we have (Y (p) [} 9,) €, = (§ (1 9)48,- Now we .use part 2) of Lemma 4 and obtain
that ¥ (p) € N D48, = (F (] 9)48, for all primes p. Therefore ('p (¥ (p) &, (1 DWEp) = (1, (F 17
9)«Sp . But then ([1,¥ (p) Epd{ | (@*(pp@p')) SN D (M1,Sy) . Hence T 10 (57 D)y
The Lemma is established.
THEOREM. Every local radical class sétisfies the Lockett condition.

Proof. Let ¢ be a complete inner radical function of the class ¥ and © the class of
all solvable groups. Then it is clear that 9 1is closed under y-injectors and it follows
from Lemma 6 that Ty = M ..

COROLLARY 1 (Bryce, Cossey, Beidleman, Hauck {2, 3]). Primitive saturated formations
and radical classes of groups of the types X¥&,8, and ¥R satisfy the Lockett condition.

Proof. Obviously, the class of groups ¥&:8; is an example of a local class since it
is defined by a complete inner radical function % such that for every prime p we have

X&q, if pem.
'll’(p):; | f@n@_—r’ if » c .

Now the result follows immediately from the theorem and Corollary 2, 3 in [3].

COROLLARY 2. If 5.9 are local radical classes then & (19 is a radical class satis-
fying the Lockett condition.

Proof. It is clear that the radical class & (1 © 1is local; hence the result follows
from the Theorem.

COROLLARY 3. Let &, » be radical classes where 9 is local. Then the product F% of
radical classes satisfies the Lockett condition.

Proof. It is easy to see that 3§ is a local radical class defined by a radical func-
tion f such that £(p) =¥ h(p) for all primes p where h is some radical function of the class

» . Now the result follows immediately from the Theorem.
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