
RADICAL CLASSES OF FINITE GROUPS WITH THE LOCKETT CONDITION 

N. T. Vorob'ev 

In the theory of radical classes of finite solvable groups (Fitting classes) the follow- 
ing is a well-known problem (the Lockett conjecture): can every radical class ~ be obtained 
as intersection of two radical classes 3" and ~, where ~*- {G ~ ~ f (G2)~ = (G})2<g, g-~> I 
g ~ G} and ~ is some normal radical class [i]? 

First results on this problem were obtained by Bryce and Cossey [2] who proved that the 
Lockett conjecture holds for all radical classes ~, satisfying ~], ~ ~* ~ 6. ; here 3. = 

{~ [~* ~ 3*} and ~. is a minimal radical class. A radical class of groups ~ for which 
~, = 3" !~ <. is said to satisfy the Lockett condition [3]. Shortly after, an example was 
constructed in [4] of a radical class ~ such that ~.~* ('i ~. ; however, the problem of 
describing the radical classes satisfying the Lockett condition remains open (cf. [2, 3]). 

At present the most general result in this direction is the result of Beidleman and Hauck 
[3] which says that radical classes of the form .~a~a, .~ satisfy the Lockett condition. 

In [5] the author announced results relating to the study of local radical classes; 
these are constructions which are dual to well-known basic objects in the theory of forma- 
tions of finite groups, viz. local formations (cf [6, Chap. i]). 

The main result of the present paper is to prove that every local radical class of fi- 
nite solvable groups satisfies the Lockett condition. The previously quoted results [3] and 
[2] are special cases of our theorem (radical classes of the form ~a~, ~',~ are examples 
of local classes). From the main result we obtain also an easy positive answer to question 
8.30 posed by Lausch in the Kourovska Notebook [7] for the case of local radical classes 
(Corollary 2). 

If ~ is a radical class then G~ denotes the ~ -radical of the group G, ~ denotes the 
product of the radical classes ~ and ~ , i.e., the class of all groups G for which G'G~ ~ ~ �9 
A radical class is called local [5] if there exists a local group function f [6] such that 
f(p) is a radical class for all prime numbers p and ~ = ~p/(p) @~p. In this case we will 
call f a radical function of the class ~ . A radical class ~ is called a Lockett class [i] 
if ~ = ~* . Other definitions and notation can be found in [6, 8] and [9] if required. All 
groups under consideration are finite and solvable. The following definition is due to L. A. 
Shemetkov. 

Definition i. Let f be a radical function of the class ~. Then we say that. 

i) f is inner if f(p) ~_Z~ for all primes p; 

2) f is complete if f(p) @p = f(p) for all primes p. 

LEMMA i. Every local radical class (in the general case of not necessarily solvable 
groups) is determined by a complete inner radical function. 

Proof. Assume that ~ is a local radical class. Then there exists a radical function 
f such that ~ ~ ~:~/(p)~,@~" We define a radical function ~ as follows: ~: (p) = f(p) ~ 
for every prime p. It is clear that ~ = ~I q (P)@T,@, ' �9 

!' 

Now we define the radical function ~ such that ~(p) = ~ (p) @p . It is clear that ~ is 
a complete radical function of the class ~. We will now show that ~ is an inner radical 
function. Let G ~ ~(p). Then G/G~o~-~=@t,@ p, and therefore G ~ f~(p)@p~jr. Assume now that 

q is any prime number different from p. Then @~@~ and therefore G~'~q ~ ,~. It follows 

that (G~%')~q"q'~7 T (q) . Using Theorem 7 of [9] we obtain G(~q ~(q). Therefore G G~,~ 
G/G(~q'~q'/G~(q~:"G~qeq'~---_~q@q We have shown that G ~ f];~ (p)@9/= ~" 
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The Lemma is established. 

Definition 2. Let ~ b be radical classes of groups. By ~ ~ ~ we denote the class 
of groups defined as follows: 

G E ~ o ~ if and only if the i-injector of G belongs to 5. 

It is easy to see that the class ~ ~ ~ is S,,-closed, but in general it is not a radi- 
cal class (cf. example 3.2 (b) [i0]). The construction of this class of groups is dual to 
one known in the theory of formations, namely the formation product of second kind; this has 
been studied in [ii, 12]. 

Recall that a radical class G is called a Fischer class [i] if K E H E G ~ F, K<~G 
and H/K ~ @~, always implies H e ~ (p is some prime number). 

In the following three lemmas we do not assume that the groups under consideration are 
solvable. 

LEMMA 2. Every local radical class is a Fischer class. 

Proof. Let f be a radical function of the class ~ and G a group from ~. We will 
show that if K is a normal subgroup of G such that K c H c G and H/K e $,1 for some prime 
number q then H '~ ~. It will be sufficient to show that H~ ~'~p E f(p) for all prime num- 
bers p. We distinguish two possibilities. 

i. p is a prime number different from q. 

In this case H/K ~ @p and therefore H %j E K. Hence K ~p'= H ~p' and therefore , = 
H~; ,~7'' But K e ~ and therefore H'~c'~.'~ f(p). 

2. p = q. Let Hq be a Sylow q-subgroup of the group H. Then HqK/K is a Sylow q-sub- 
group of H/K. Consequently, H = HaK. Since the Sylow q-subgrouD Gq of G is contained in 
G ~%' and Hq is contained in Gqwe Have [Hq, K] c [G~l ' , K] c G~'*,~ ' n K. G E~, hence G'% c 
Gf~)~,~q . Therefore [Hq, K] E K n Gt(q)~q = Kic~l~:~ = R. It is easy to see that RHq~-~KHq = H. 
Since RHq = f(q) @~, it follows from H/RHq e ~q, that H e f(q) ~@~,. Hence H e ~-f(p)p @~,@~ = 

The Lemma is established. 

A radical class of groups which is at the same time a homomorph (formation), closed un- 
der the operation Extr (cf. also [6, p. 12]) will be called a saturated radical homomorph 
(respectively, a saturated radical formation). 

LEMMA 3. If ~ is some radical class and ~ a saturated radical homomorph then 

~*~ = (~)* 

Proof. We prove first that ~*@ ~(~Y~)* Assume the contrary. Now choose in the class 
~*~ ~ (~)* a group G of minimal order. It is clear that G~ ~ G~,. Assume that G~dG~ 

~ (GIGs). Since ~ is a homomorph it follows from GIGs, E b that G/G~/G~,/G~----_ ~. Consequent- 
ly, G/G~/@ (G/G~) ~ ~ and therefore G/G~ ----_ ~. 

Thus G ~ (~) *, which is impossible. 

If G~/G~ is not contained in ~ (G/Gh) then G/Gn contains a maximal subgroup ~I/G~ 
such that G/G~ = (G~,/G~)(M/G~) . By Theorem 3.5 i) [13] we have G~,/G~ ~ Z (G/Ga) , hence 

M/G~ <:3 G/G~ �9 It now follows by induction that /%/ ----_ (@$)~' Since ~* ~ (@~)* we have 

G~* E (~)*. Therefore G = G~,~I E (~)* This contradiction shows that ~*~ ~__ (~)* 

Now we shall prove the reverse inclusion. If G--~_~ , it follows from the fact that 
is a homomorph that G~_ ~*~ Hence ~ * ~  and therefore by Theorem 3.3 c) of [13] 

we have (~)~(~)* By the definition of the class ~* (cf. [i] and [13]) every group 
G of ~ is a homomorphic image of the group (G x G)~ , and therefore G--~_~ �9 It is therefore 
clear that ~ is a Lockett class, i.e. ~ = ~* . Moreover, by Theorem 3.3 c) of [13] the 
class ~* is also a Lockett class. Therefore G*~ is a product of Lockett classes, and it 
follows easily from the proof of Lemma 3.1 (b) of [14] that ~*~ is also a Lockett class. 
Hence (~b)* ~ ~ . 

The Lemma is established. 

LEMMA 4. Let ~i, <%= be radical classes of groups. Then the following assertions 
hold: 
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1) if 

2) if 

Proof. 
therefore G ~  ~ .  

By i) we have (~ ~ ~=)~t~ ~ ~=~. 

If G/G~---_~ then G/~ G~ ~ ~. It is clear that 
(i = i, 2). 

The lemma is established. 

is a radical homomorph and ~z~= then ~_= ~=~; 

is a radical formation then (~i ~)~ -- ~z~ !~ ~e~ 

Let ~ be a radical homomorph and ~]~. Then G/Ga~ G/G~,/G~jG~,----=~ and 

~G;~ = Ga~. Therefore g ~ (~ ~)~ 

Definition 3. The radical function f is called a Lockett function if f(p) is a Lockett 
class for all prime numbers p. 

LEMMA 5. Every local radical class can be defined by a Lockett function. In particular, 
every local radical class is a Lockett class. 

Proof. Let T be a radical function of the class 3. Then 9 = Np~ (P) ~p~>. It is 
easy to see that for every prime p the radical class ~ (p) ~p~p, is local. It follows from 
Lemma 2 that ~ (p) ~p~p is a Fischer class and thus by Theorem 2.2 d) of [i] it is also a 
Lockett class. Now we apply Lemma 3 and find that (~ (p))*~p~p, = T (P)~p~p" for all primes 
p. We now construct the radical function f as follows: f(p) = (~ (p))* for all primes p. 
By Theorem 2.2 b) of [i] f is then a Lockett function locally defining 3. The fact that 
is a Lockett class follows immediately from property 2.3 b) in [i]. 

The Lemma is established. 

COROLLARY. Every local radical class can be defined by a complete inner Lockett func- 
tion. 

Proof. By Lemma 1 every local radical class 9 can be defined by a complete inner radi- 
cal function ~ which can be obtained easily from the Lockett function f (which exists by 
Lemma 5), if it is assumed that ~(p) = (f(p) A 9) ~p for all primes p. 

Definition 4. Let f be a radical function of the class 9. The radical class ~ is 
said to be closed under f-injectors if ~_/(p)o ~ for all primes p. 

Examples. Let f be an inner radical function of the class 3. Then the radical class 
is closed under f-injectors in each of the following cases: 

I) f(p) is an S-closed radical class for all primes p, ~ is minimal normal; 

2) ~ = ~ where ~_~/(p) for all primes p, ~ is an S-closed radical class; 

3) ~ ~/(p) for all primes p or ~ ~ ~ ; 

4) f(p) is normal for all primes p, ~ arbitrary; 

5) $ is S-closed. 

Indeed, in case i) f(p) is a Fischer class for all primes p, and therefore by Theorem 
4.4 of [i0] the class ~ is closed under f-injectors. 

We now consider case 2). Let G# $ and F an f(p)-injector of the group G. Then 
G/Gx ~ ~ But Gx ~i Gi~,)c~F , and therefore F/G~ ~ ~ since the class ~ is S-closed. By 
Theorem i.i of [15] the radical class ~ is a formation. Consequently, F~TE~ = ~ The 
cases 3)-5) are trivial. 

LEMMA 6. If ~ is a complete inner radical function of the class 9 and ~ is a radical 
class which is closed under ~-injectors then ~ I~i ~, = (~ :~ ~),. 

Proof. Since ~ ~ ~-_~ it follows from Theorem 3.5 of [2] that (3 i~ ~),~D,- Conse- 
quently, (~ ~ ~),_~--_ ~ fl ~, �9 Now we prove the reverse inclusion. Let IS be a group in 
and F a ~(p)-injector of the group G where p is a prime. Then F E ~(p) N ~ and therefore 
F e ~ ~ ~. Then it follows from Lemma 3 and Theorem 2.2 b) of [i] that F ~ ((~ ~ ~),~/)* ~ 
(~ ~ ~)*~, . Hence G~/(p) = ~ (p) o ((~ !! ~),~,)* . We have thus shown that ~/(p). 

By Theorem 3.3 in [I0] the class f(p) is a radical class. By Theorem 3 of [3] we there- 
fore have the equation 

But then it follows from Theorems 3.5 of [2] and 2.2 b) of [i] that ~, _ci=~ (p) o (~[~ ~),ep. 
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Therefore 

r (p):~ ~,  c_ (5 ~' ~),~,~. 

By Lemma 4 i) we have (~ (P) ~] ~.) ~,' ~--- (3 N ~),~p,. Now we .use part 2) of Lemma 4 and obtain 

that ~(p) ~p, ~ ~.~p, G(~ ~ ~).~, for all primes p. Therefore <~p(~ (P) ~l,' (i ~.~.)~-~ip(~ ~ 
~ ) , ~ p . .  But then ( ~  (p)~,}-I ! (~, (~p~p.)) ~ (,~ ~ ~), ( ~ l p ~ p , )  �9 Hence ~ ~] ~,  ~ (~ ~ ~),. 

The Lemma is established. 

THEOREM. Every local radical class satisfies the Lockett condition. 

Proof. Let ~ be a complete inner radical function of the class ~ and ~ the class of 
all solvable groups. Then it is clear that ~ is closed under ~-injectors and it follows 
from Lemma 6 that ~, = ~ ~ ~,. 

COROLLARY I (Bryce, Cossey, Beidleman, Hauck [2, 3]). Primitive saturated formations 
and radical classes of groups of the types ~a~a, and ~ satisfy the Lockett condition. 

Proof. Obviously, the class of groups ~=, is an example of a local class since it 
is defined by a complete inner radical function ~ such that for every prime p we have 

~I~(P)-~, if p ~ ~'. 

Now the result follows immediately from the theorem and Corollary 2, 3 in [3]. 

COROLLARY 2. If ~, ~ are local radical classes then ~ i] ~ is a radical class satis- 
fying the Lockett condition. 

Proof. It is clear that the radical class ~ ~ ~ is local; hence the result follows 
from the Theorem. 

COROLLARY 3. Let ~, ~ be radical classes where & is local. Then the product ~& of 
radical classes satisfies the Lockett condition. 

Proof. It is easy to see that ~ is a local radical class defined by a radical func- 
tion f such that f(p) =,} h(p) for all primes p where h is some radical function of the class 

. Now the result follows immediately from the Theorem. 
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