A CRITERION FOR THE LOCALITY OF FORMATION PRODUCTS

N. T. Vorob'ev

Questions about the construction of formations occupy a central position in the theory of formations. In addition to methods of constructing formations by means of group functions and screens (see Chap. I of [1], also [2-8]), there exist methods for constructing from two formations, say $\tilde{\mathfrak{F}}$ and \mathfrak{H} , a third, which is naturally called a formation product. The simplest case of a formation product was introduced by L. A. Shemetkov [1]. Five important types of formation products are known (see [5-7]): the formation products $\tilde{\mathfrak{F}} *_i \mathfrak{H}$ of the i-th kind, $1 \leq i \leq 5$. There arises the following problem: Find those formations $\tilde{\mathfrak{F}}$ and \mathfrak{H} for which the formation $\tilde{\mathfrak{F}} *_i \mathfrak{H}$ is local.

In the present note we consider this problem, which was suggested to the author by L. A. Shemetkov, for the formation products of the second kind.

Suppose we are studying a nonempty class of groups \mathfrak{U} , closed under the operations S, Q, and $\operatorname{Ext}_{\mathfrak{U}}$, such that each group G in \mathfrak{U} possesses at least one \mathfrak{F} -projector and any two \mathfrak{F} -protors are conjugate in G (\mathfrak{F} is a local formation in \mathfrak{U}). In what follows, by a group we will always mean a group of class \mathfrak{U} , and by a class of groups (in particular, a formation) we will mean a subclass (formation) of \mathfrak{U} .

<u>Definition 1.</u> Suppose ϑ is a local formation and ϑ an arbitrary formation. Let $\vartheta * 2\vartheta$ denote the class of all groups in which an ϑ -projector belongs to ϑ .

If $\mathfrak{H} = \emptyset$, then $\mathfrak{H} * _{2}\mathfrak{H} = \emptyset$.

The class $\tilde{\mathfrak{F}} * {}_{2} \tilde{\mathfrak{Y}}$ is obviously a formation, which, in general, is not local. Note that special cases of the formation $\mathfrak{F} * {}_{2}\mathfrak{Y}$ have been studied by various authors. In the class of solvable groups, Doerk [8], D'Arcy [9], and Beidleman and Makan [10] studied the formation $\mathfrak{F} * {}_{2}f(p)$ (f a maximal inner local screen of the formation \mathfrak{F} and p a prime), Blessenohl [11] the formation $\mathfrak{F}_{\pi} * {}_{2}\mathfrak{Y}$ and Doerk [12] the formation $\mathfrak{F} * {}_{2}\mathfrak{Y}$ in the case where \mathfrak{Y} is local. The formation $\mathfrak{F} * {}_{2}f(p)$ in the class of groups with $\pi(\mathfrak{F})$ -solvable \mathfrak{F} -coradical was studied in [5-7].

We will denote by \mathfrak{U}_{π} the formation of all π -groups of class \mathfrak{U} .

A local screen f will be called:

1) complete if $\mathfrak{R}_p f(p) = f(p)$ for each prime p;

2) S-closed if the formation f(p) is S-closed for each prime p.

All other notation and definitions can be found in Shemetkov's monograph [1].

We first state as lemmas, without giving the proofs, three results from [5, 6].

LEMMA 1. Suppose f_1 , f_2 are maximal inner local screens of the formations \mathfrak{F}_1 , \mathfrak{F}_2 respectively. Then \mathfrak{F}_1 is a subformation of \mathfrak{F}_2 if and only if $f_1 \leq f_2$.

Recall that if δ is a formation with maximal inner local screen f, then we have denoted by f* (see [5]) the local screen such that $f^*(p) = \delta * {}_2 f(p)$ for each prime p.

LEMMA 2. Suppose \mathfrak{F} is a formation with maximal inner local screen f. If each group in \mathfrak{U} has a $\pi(\mathfrak{F})$ -solvable \mathfrak{F} -coradical, then:

1) an \mathfrak{F} -projector F of the group G covers each f*-central chief factor of G;

2) each chief factor of G covered by an \mathfrak{F} -projector F of G is f*-central.

LEMMA 3. If $\tilde{\sigma}$ is a nonempty formation, π is some set of primes, and $\mathfrak{U}_{\pi}\mathfrak{F} = \mathfrak{F}$, then the local screen f such that

Vitebsk State Pedagogic Institute. Translated from Matematicheskie Zametki, Vol. 34, No. 2, pp. 165-170, August, 1983. Original article submitted July 9, 1982.

565

$$f(p) = \begin{cases} \mathfrak{I}, & \text{if } p \in \pi, \\ \mathfrak{y}_{\pi'} \mathfrak{F}, & \text{if } p \in \pi' \end{cases}$$

is a maximal inner local screen of the formation $\mathfrak{U}_{\pi'}\mathfrak{F}$.

LEMMA 4. If δ is a local formation and φ a complete local screen, then the local screen φ^* such that $\varphi^*(p) = \mathfrak{F} * {}_2\varphi(p)$ for each prime p is complete.

<u>Proof.</u> Obviously, $\varphi^*(p) \subseteq \Re_p \varphi^*(p)$. Suppose $G \in \Re_p \varphi^*(p)$ and F is an \mathfrak{F} -projector of G. Then $F/F \cap O_p(G) \simeq FO_p(G)/O_p(G) \equiv \varphi(p)$. Since $F \cap O_p(G) \subseteq O_p(F)$, it follows that $F/O_p(F) \equiv \varphi(p)$. But φ is a complete screen. Therefore, $F \in \Re_p \varphi(p) = \varphi(p)$. It follows that $G \in \varphi^*(p)$. The lemma is proved.

<u>Definition 2.</u> Suppose \mathfrak{F} is a local formation and f a local screen of \mathfrak{F} . A subgroup H of a group G will be called an $f - \mathfrak{T}$ -subgroup if H covers only f-central chief factors of G.

If $\tilde{\delta}$ is a local formation with maximal inner local screen f, then examples of $f^* - \mathcal{T}$ - subgroups (*f*- \mathcal{D} -subgroups) in groups with $\pi(\tilde{\delta})$ -solvable $\tilde{\delta}$ -coradical are $\tilde{\delta}$ -projectors of groups ($\tilde{\delta}$ -normalizers of groups).

LEMMA 5. Suppose $\delta_1 \cong \delta_2$ are formations with maximal inner local screens f_1 , f_2 respectively. Suppose f is a maximal inner local screen of the formation l form $(\tilde{v}_1 *_2 \tilde{v}_2)$. Then:

1) $\varphi \leqslant f$, where φ is the local screen such that $\varphi(p) = \mathfrak{F}_{1*2}f_{2}(p)$ for each prime p;

. 2) if an $\tilde{\mathfrak{F}}_i$ -projector of each group G is an $f_i^* - \mathfrak{D}$ -subgroup of G (f_i^* is the local screen such that $f_i^*(p) = \mathfrak{F}_i *_2 f_i(p)$ for all primes p), i = 1, 2, then:

a) f(p) is a subformation of $\varphi_1(p)$, where $\varphi_1(p) = \mathfrak{U}_{p'} \varphi(p)$, φ is the same screen as in 1), and p is a prime such that $\mathfrak{H}_2 \subseteq f_1(p)$;

b) $f \leq \varphi_1$ and $f = \varphi'$ if $\mathfrak{F}_2 \subseteq f_1(p)$ for all primes $p \in \pi(\mathfrak{F}_1)$, and the screens φ and φ_1 are the same as in 1) and a).

<u>Proof.</u> We will prove the first assertion of the lemma. Assume it is false. Then there exists a prime p such that $\varphi(p)$ is not contained in f(p). 'Choose in the class $\varphi(p) \setminus f(p)$ a group G having the smallest order. In view of Theorem 3.3 of [1], the screen f is complete, hence $O_p(G) = 1$. Consider the regular wreath product $\Gamma = P_2 G$, where $|\mathbb{P}| = p$. Then $\Gamma = N \times G$ and $N = O_p(\Gamma) = F_n(\Gamma)$. Suppose F is an $\tilde{\delta}_1$ -projector of G. Since $G \in \varphi(p)$, we have $F \in f_2(p)$. But $\tilde{\delta}_1 \cong \tilde{\delta}_2$. Consequently, by Lemma 1, $F \in f_1(p)$. Applying Lemma 2 of [13], we see that the subgroup $FC_N(F^{i_1(p)}) = FN$ is an $\tilde{\delta}_1$ -projector of Γ . It follows from Theorem 3.3 of [1] that the screen f_2 is complete and $F/F \cap N \simeq FN/N \in f_2(p)$, hence $FN \in \mathfrak{A}_p f_2(p) = f_2(p)$. Consequently, $\Gamma \in \varphi(p) \subseteq l$ form $(\tilde{\delta}_1 *_2 \tilde{\delta}_2)$. It follows that $G \simeq \Gamma/N \in f(p)$. Contradiction. Assertion 1) is proved.

Let us prove assertion 2). In view of Lemma 3 and the definition of the formation $l \operatorname{form}(\tilde{\alpha}_{1*_2}\tilde{\alpha}_2)$, in order to establish a) it suffices to show that $\tilde{\alpha}_{1*_2}\tilde{\alpha}_2$ is a subformation of the formation $\mathfrak{U}_{p'} \varphi(p)$, where p is a prime such that $\tilde{\alpha}_2 \subseteq f_1(p)$. Suppose $G \subseteq \tilde{\alpha}_{1*_2}\tilde{\alpha}_2$ and \mathbb{H}/\mathbb{K} is a pd-chief factor of G. Then $G/C_G(\mathbb{H}/\mathbb{K}) \subseteq f_1^*(p)$. Consequently, an $\tilde{\alpha}_1$ -projector F of G covers \mathbb{H}/\mathbb{K} . Since $\tilde{\alpha}_2 \subseteq \tilde{\alpha}_1$ and $G \subseteq \tilde{\alpha}_{1*_2}\tilde{\alpha}_2$, it is easy to see that F is an $\tilde{\alpha}_2$ -projector of G. Therefore, by hypothesis, $G/C_G(\mathbb{H}/\mathbb{K}) \equiv f_2^*(p)$. It follows that

$$G/O_{p'}(G)/F_p(G)/O_{p'}(G) \simeq G/F_p(G) \subset f_2^*(p) \cap (\mathfrak{F}_1 *_2 \mathfrak{F}_2).$$

It is easy to see that $f_2^*(p) \cap (\mathfrak{F}_1 *_2 \mathfrak{F}_2) = \varphi(p)$. But it follows from Lemma 4 that φ is a complete screen. Consequently, $G/O_{p'}(G) \in \varphi(p)$, hence $G \in \mathfrak{U}_{p'}\varphi(p)$. Thus, $\mathfrak{F}_1 *_2 \mathfrak{F}_2 \subseteq \mathfrak{U}_{p'}\varphi(p)$.

Assertion b) now follows directly from Lemmas 1 and 3 and from 1). The lemma is proved.

<u>THEOREM.</u> Suppose $\tilde{\mathfrak{F}}_1$, $\tilde{\mathfrak{F}}_2$ are local formations. If an \mathfrak{F}_i -projector of each group G of class \mathfrak{U} is an $/_i - \mathfrak{D}$ -subgroup of G (i = 1, 2) and $\mathfrak{F}_1 = \mathfrak{U}_n$, then the formation $\mathfrak{F}_1 *_2 \mathfrak{F}_2$ is local.

<u>Proof.</u> Obviously, $\mathfrak{F}_1 * _2 \mathfrak{F}_2 \subseteq l$ form $(\mathfrak{F}_1 * _2 \mathfrak{F}_2)$. We will prove that l form $(\mathfrak{F}_1 * _2 \mathfrak{F}_2) \subseteq \mathfrak{F}_1 * _2 \mathfrak{F}_2$. Assume this is not so. Choose in the class l form $(\mathfrak{F}_1 * _2 \mathfrak{F}_2) = (\mathfrak{F}_1 * _2 \mathfrak{F}_2)$ a group G having the smallest order. Then G has a unique minimal normal subgroup K, which coincides with $G^{\mathfrak{F}_1 * _2 \mathfrak{F}_2}$.

Suppose K is a π' -group and F an \Im_1 -projector of G. Then $F \simeq F/F \cap K \in \mathfrak{F}_2$, hence $G \in \mathfrak{F}_1 * {}_2\mathfrak{F}_2$. Contradiction.

Assume that $O_{\pi'}(G) = 1$. If K is non-Abelian, then obviously, $C_G(K) = 1$. Consequently, $G \subseteq f(K)$, where f is a maximal inner local screen of the formation l form $(\mathfrak{F}_1 * \mathfrak{F}_2)$. It is easy to see that \mathfrak{F}_1 has a maximal inner local screen f_1 such that

$$f_1(p) = \begin{cases} \mathfrak{F}_1, & \text{if } p \in \pi, \\ \emptyset, & \text{if } p \in \pi'. \end{cases}$$

It follows that $\widetilde{\mathfrak{F}}_1 \cap \widetilde{\mathfrak{F}}_2 \subseteq \widetilde{\mathfrak{F}}_1 \subseteq f_1(p)$ for all primes $p \in \pi$. Let ψ be a maximal inner local screen of $\mathfrak{F}_1 \cap \mathfrak{F}_2$ (the formation $\mathfrak{F}_1 \cap \mathfrak{F}_2$ is local by virtue of Lemma 3.7 of [1]). Then, by assertion 2) of Lemma 5, we have $f(K) \subseteq f(p) \subseteq \mathfrak{F}_1 *_2 \mathfrak{F}_2$ for some prime $p \in \pi$. But $\mathfrak{F}_1 *_2 \psi(p) \subseteq \mathfrak{F}_1 *_2 \mathfrak{F}_2$. Therefore, $G \in \mathfrak{F}_1 *_2 \mathfrak{F}_2$. Contradiction.

It remains to consider the following situation: K is an Abelian p-group, $p \in \pi$. Since $\mathfrak{F}_1 \cap \mathfrak{F}_2 \subseteq f_1(p)$, it follows from assertion 2) of Lemma 5 that $G/\mathcal{C}_G(K) \in \mathfrak{F}_1 * \mathfrak{g}(p)$. Consequently, $F/\mathcal{C}_F(K) \simeq F\mathcal{C}_G(K)/\mathcal{C}_G(K) \in \mathfrak{g}(p)$. Look at the chief series

$$F_0 = F \supset F_1 \supset \ldots \supset F_k = F \cap K \supset F_{k+1} \supset \ldots \supset F_t = 1$$
(*)

of F. In the section $F \supset \ldots \supset F \cap K$ all factors of the series (*) are $(\mathfrak{F}_1 \cap \mathfrak{F}_2)$ -central, since $F/F \cap K \simeq FK/K \in \mathfrak{F}_1 \cap \mathfrak{F}_2$. It is easy to see that $C_F(K) \subseteq C_F(F_{i-1}/F_i)$, i = k, k + 1, ..., t. Consequently, $F/C_F(F_{i-1}/F_i) \in \psi(p)$. Thus, $F \in \mathfrak{F}_1 \cap \mathfrak{F}_2 \subseteq \mathfrak{F}_2$, hence $G \in \mathfrak{F}_1 * 2\mathfrak{F}_2$. Contradiction. The theorem is proved.

<u>COROLLARY 1.</u> Suppose $\tilde{\sigma}_i$ is a local formation (i = 1, 2). If each group in \mathfrak{U} has a $\pi(\mathfrak{F}_i)$ -solvable $\tilde{\mathfrak{F}}_i$ -coradical and $\tilde{\mathfrak{F}}_1 = \mathfrak{U}_n$, then $\mathfrak{F}_1 * {}_2\mathfrak{F}_2$ is a local formation.

<u>Proof.</u> By Lemma 2, each \mathfrak{F}_i -projector of a group in \mathfrak{U} is an $f_i^* \cdot \mathfrak{D}$ -subgroup of this group (i = 1, 2). Then $\mathfrak{F}_1 * \mathfrak{D}_2$ is local by the theorem just proved.

From Corollary 1 we easily obtain the following well-known result of Blessenohl, which has been proved by other methods.

<u>COROLLARY 2 (Blessenohl [11])</u>. Suppose $\mathfrak{U} = \mathfrak{S}$ and \mathfrak{F} is a local formation. If H is a π -Hall subgroup of G and $H/H \cap \Phi(G) \in \mathfrak{F}$, then $H \in \mathfrak{F}$.

<u>Proof.</u> By Theorem 15.2 of [1], the set of all \mathfrak{C}_{π} -projectors of \mathcal{C} coincides with the set of all π -Hall subgroups of \mathcal{G} . Since $H\Phi(\mathcal{G})/\Phi(\mathcal{G}) \simeq H/H \cap \Phi(\mathcal{G}) \subset \mathfrak{F}$, it follows that $\mathcal{G}/\Phi(\mathcal{G}) \subset \mathfrak{S}_{\pi} \ast 2\mathfrak{F}$. But by Theorem 4.2 of [1] and Corollary 1 the formation $\mathfrak{C}_{\pi} \ast 2\mathfrak{F}$ is saturated. Therefore, $\mathcal{G} \subset \mathfrak{S}_{\pi} \ast 2\mathfrak{F}$, hence $H \subset \mathfrak{F}$.

LITERATURE CITED

- 1. L. A. Shemetkov, Formations of Finite Groups [in Russian], Nauka, Moscow (1978).
- L. A. Shemetkov, "Two trends in the development of nonsimple finite groups," Usp. Mat. Nauk, 30, No. 2, 179-211 (1975).
- 3. L. A. Shemetkov, "Graduated formations of groups," Mat. Sb., 94, No. 2, 264-268 (1974).
- 4. L. A. Shemetkov, "Screens of a product of formations," Dok1. Akad. Nauk BSSR, <u>25</u>, No. 8, 677-680 (1981).
- 5. N. T. Vorob'ev, "Maximal screens of local formations," Algebra Logika, <u>18</u>, No. 2, 137-161 (1979).
- 6. N. T. Vorob'ev, "Embedding of local screens," Mat. Zametki, 30, No. 2, 305-311 (1981).
- N. T. Vorob'ev, "Maximal screens of induced formations," Dok1. Akad. Nauk BSSR, 23, No. 2, 115-117 (1979).
- K. Doerk, "Zur Theorie der Formationen endlicher auflösbarer Gruppen," J. Algebra, <u>13</u>, No. 3, 345-373 (1969).
- P. D'Arcy, "&-abnormality and the theory of finite solvable groups," J. Algebra, <u>28</u>, No. 2, 342-361 (1974).
- 10. J. C. Beidleman and A. K. Makan, "On saturated formations which are special relative to the strong cover-avoidance property," Proc. Am. Math. Soc., 47, No. 1, 29-36 (1975).
- D. Blessenohl, "Über Formationen und Halluntergruppen endlicher auflösbarer Gruppen," Math. Z., <u>142</u>, No. 3, 299-300 (1975).
- K. Doerk, "Zur Sättigung einer Formationen endlicher auflösbarer Gruppen," Arch. Math., 28, No. 5, 561-571 (1977).
- 13. P. D'Arcy, "On formations of finite groups," Arch. Math., 25, No. 1, 3-7 (1974).