EMBEDDING OF LOCAL SCREENS

N. T. Vorob'ev

The notion of a screen, introduced by Shemetkov in [1, 2], plays an important role in the problems of construction and classification of formations. A screen is a mapping f of the class \mathfrak{G} of all finite groups into a set of classes of groups such that the following conditions are fulfilled for each group G:

- 1) f(G) is a formation;
- 2) $f(G) \subseteq f(G^{\alpha}) \cap f(\text{Ker } \alpha)$ for each homomorphism α of the group G;
- 3) $f(1) = \mathfrak{G}$, where 1 is the trivial group.

Following Shemetkov, we will assume each set Ω of screens to be partially ordered by the relation \leq , defined in the following manner. If $f_1, f_2 \in \Omega$, then the screen f_1 will be said to be embedded in the screen f_2 (in symbols, $f_1 \leq f_2$.) if $f_1(G) \subseteq f_2(G)$ for each group G. There arises the problem to determine the conditions under which a screen f_1 is embedded in a screen f_2 . The present note is devoted to the consideration of this problem for local screens. Three criteria for the embedding of local screens are obtained. Let us recall that a screen f is said to be local [1] if the following conditions are fulfilled:

1) f(R) = f(S) for each pair of nontrivial p-groups and each prime p (in this case, the value of f on nontrivial p-groups is denoted by f(p));

2) $f(G) = \bigcap_{p} f(p)$ for each nontrivial group G, where p runs over all prime divisors of the order of G.

All the groups considered in the present note are finite. We will denote the class of all p-groups, where p is a prime, by \mathfrak{G}_p . Let \mathfrak{X} be a certain class of groups. A screen f is called an \mathfrak{X} -screen if $f(G) \subseteq \mathfrak{X}$ for each group G. Where necessary, definitions and notation, not given here, can be found in [1, 3-5]. In the sequel, we will use the following lemmas, which are of independent interest.

LEMMA 1. Let H be a subgroup of a group G such that G = HF(G). If \mathfrak{F} is an arbitrary nonempty formation, then $H^{\mathfrak{F}} \subseteq G^{\mathfrak{F}}$.

<u>Proof.</u> Let G be a group of the least order for which the lemma is not valid. If $G \in \mathfrak{F}$, then it follows by Lemma 1.5 of [6] that $H \in \mathfrak{F}$, and the lemma is valid. Let us suppose that G does not belong to \mathfrak{F} . Let K be a minimal normal subgroup of G contained in $G^{\mathfrak{F}}$ and $H^{\mathfrak{F}}$ and $G^{\mathfrak{F}}$ be the \mathfrak{F} -coradicals of the groups H and G, respectively. Then it follows by Lemma 1.5 of [1] that $H^{\mathfrak{F}} K/K$ and $G^{\mathfrak{F}}/K$ are the \mathfrak{F} -coradicals of the groups HK/K and G/K, respectively. By induction, $H^{\mathfrak{F}} \subseteq G^{\mathfrak{F}}$. The lemma is proved.

LEMMA 2. Let all the minimal normal subgroups of a group G be solvable. If G has at most two minimal normal subgroups and $O_p(G) = 1$ for a certain prime p, then G has an exact irreducible representation over a finite field of characteristic p.

<u>Proof.</u> Let us suppose that the group G has no proper normal subgroups. Then the order of G is equal to a prime number q that is different from p. Let X be a Schmid group of order p^{mq} with a normal elementary Abelian Sylow p-subgroup X_p. Then a Sylow q-subgroup X_q of X is isomorphic to G. But X_q is isomorphically embedded in the group GL(m, p) of all automorphisms of the Sylow p-subgroup X_n of X. Consequently, the representation

 $\varphi: \quad G \to \operatorname{GL}(m, p)$

is also an exact irreducible representation over a field of p elements.

Let M be the Socle of the group G. If M is a solvable minimal normal subgroup of G, then M contains a normal subgroup K such that the group M/K is cyclic and $K_G = 1$. Let us

Gomel State University. Translated from Matematicheskie Zametki, Vol. 30, No. 2, pp. 305-311, August, 1981. Original article submitted June 2, 1978.

suppose that G has exactly two different solvable minimal normal subgroups R and S. Then $M = R \times S$. If the orders of the subgroups R and S are relatively prime, then

$$R = \langle r \rangle \times K_1, \quad S = \langle s \rangle \times K_2,$$

where K_1 and K_2 are subgroups of prime index in R and S, respectively.

Let $K = K_1 \times K_2$. Then it is obvious that the group M/K is cyclic and $K_G = 1$. Let us suppose that the orders of the groups R and S are not relatively prime. Suppose that

$$R = \mathop{\times}\limits_{i=1}^{k} \langle r_i \rangle, \quad S = \mathop{\times}\limits_{j=1}^{l} \langle s_j \rangle$$

and

$$K = \langle r_1 \rangle \times \langle r_2 \rangle \times \ldots \times \langle r_{k-1} \rangle \times \langle s_1 \rangle \times \langle s_2 \rangle \times \ldots \times \langle s_{l-1} \rangle \times \langle r_k s_l \rangle.$$

Then it is easily seen that the group M/K is cyclic and $K_G = 1$. Thus, M always contains a normal subgroup K such that $M = \langle m \rangle \times K$ and $K_G = 1$, where $n = |\langle m \rangle|$ is either prime or a product of two prime numbers. Since n and p are relatively prime, it follows that each field of characteristic p contains exactly n different n-th roots ε , ε^2 ,..., $\varepsilon^n = 1$ of the unity. Let us consider the mapping

 $\varphi: m^{\alpha}K \to \varepsilon^{\alpha},$

where $\alpha = 1, 2, \ldots, n$. It is obvious that φ is a one-dimensional representation of the group M and Ker $\varphi = K$. Let φ^G be the representation of the group G induced by the representation φ , and τ be the irreducible component of the matrix ($\varphi^G(g)$), situated in the upper left corner. It is easily seen that Ker $\tau \cap M = K_G = 1$. Consequently, Ker $\tau = 1$, and therefore τ is the desired representation of G. The lemma is proved.

A subgroup H of a group G is called a \mathcal{DM} -subgroup [7] if H either covers or avoids each principal factor of the group G, by a check it is easy to establish that the following lemma is valid.

LEMMA 3. If H is a \mathcal{DM} -subgroup of a group G, then the order of H is equal to the product of the orders of all the principal factors of a certain principal series of G that are covered by H.

Definition. Let f be a screen. A subgroup H of a group G is called an f- $\mathcal{D}M$ -subgroup if H covers each f-central principal factor of G and avoids each f-excentral principal factor of it.

Let us recall that a screen f is called a screen of a formation \mathfrak{F} [1] if $\mathfrak{F} = \langle f \rangle$, where $\langle f \rangle$ is the set of those groups which have f-central series.

LEMMA 4. Let f be a local screen of a formation \mathfrak{F} . If a group G has an f- \mathcal{DM} -subgroup H and $G^{\mathfrak{F}}$ is nilpotent, then H is an \mathfrak{F} -projection of the group G.

<u>Proof.</u> Let G be the group of the least order for which the lemma is not valid. Since $G^{\mathfrak{F}}$ is nilpotent, it follows that G = HF(G). Let

$$G_0 = 1 \subset G_1 \subset G_2 \subset \ldots \subset G_t = G \tag{1}$$

be a principal series of G. Let us consider the series

$$\subseteq H \cap G_1 \subseteq H \cap G_2 \subseteq \ldots \subseteq H \cap G_t = H.$$
⁽²⁾

Suppose that G_{i+1}/G_i is a principal factor of the series (1), where i = 0, 1, ..., t. If H avoids G_{i+1}/G_i , then

 $H \cap G_{i+1}/H \cap G_i \simeq G_i/G_i.$

But if H covers G_{i+1}/G_i , then

$$H \cap G_{i+1}/H \cap G_i \cong G_{i+1}/G_i.$$

Consequently, all the factors of series (2) are f-central in H. Therefore $H \in \mathfrak{F}$.

Let K be a minimal normal subgroup of G that is contained in $G^{\mathfrak{F}}$. By induction, HK/K is an \mathfrak{F} -projection of the group G/K. Therefore, by virtue of Proposition VI.7.9 of [5]; to prove the lemma it is sufficient to show that H is an \mathfrak{F} -projection of the group HK. If

 $K \subseteq H$, then this is obvious. Let K be not contained in H. Then K is an f-excentral principal factor of G. Since G = HF(G), it follows that K is an f-excentral principal factor of the group HK. Consequently, $K = (HK)^{\mathfrak{F}}$, and therefore H is an \mathfrak{F} -projection of G. The lemma is proved.

It follows from Theorem 5.6 of [3] that if the \mathcal{F} -coradical of the group G is nilpotent, then each \mathcal{F} -projection of the group G coincides with an \mathcal{F} -normalizer of G. Taking this fact into account, we get the following corollary from the above lemma.

<u>COROLLARY</u>. Suppose that f_1 and f_2 are two local screens of the formation \mathfrak{F} . If the group G has an $f_1 - \mathfrak{D} \mathcal{M}$ -subgroup H_1 and an $f_2 - \mathfrak{D} \mathcal{M}$ -subgroup H_2 and, moreover, $G^{\mathfrak{F}}$ is nilpotent, then the subgroups H_1 and H_2 coincide and are \mathfrak{F} -normalizers of G.

<u>THEOREM 1.</u> Let f_1 and f_2 be two local screens. Suppose that \mathfrak{X} is a certain class of groups, and f_1^* , and f_2^* are also local \mathfrak{X} -screens such that $f_i^*(p) = \mathfrak{G}_p f_i(p)$ for each prime p, i = 1, 2. Then the following statements are equivalent:

1) $f_1^* \leq f_2^*$;

2) Each f_1 -central principal factor of an arbitrary group G belonging to \mathfrak{X} is f_2 -central.

<u>Proof.</u> Suppose that $f_1^* \leqslant f_2$. It is obvious that each f_1 -central principal factor of arbitrary group G is f_1^* -central. Let H/K be an f_1 -central principal factor of G. It is easily seen that $G/C_G(H/K)$ does not have nontrivial normal p-subgroups for any prime $p \in \pi(H/K)$. Consequently, H/K is an f_1 -central principal factor of G. Hence $\langle f_1 \rangle = \langle f_1^* \rangle$. Analogously, $\langle f_2 \rangle = \langle f_2 \rangle$. Therefore $\langle f_1 \rangle \subseteq \langle f_2 \rangle$, and statement 2) is valid.

Suppose that statement 2) holds. We can set $f_1 = f_1^*$ and $f_2 = f_2^*$. Let us suppose that there exists a prime number p such that $f_1(p)$ is not contained in $f_2(p)_*$. Then the formations $f_1(p)$ and $f_2(p)$ are obviously nonempty. Let G be a group of the least order in $f_1(p)$ that does not belong to $f_2(p)_*$. Then $G^{f_4(p)}$ is obviously the only minimal normal subgroup of G. It is easily seen that $O_p(G) = 1$. Let us consider $\Gamma = C_p \circ G$ — the regular interlacing of the cyclic group of order p with the group G. Then $\Gamma = N \\bar{G}$, where N is an elementary Abelian p-group. It is obvious that $\Gamma \\boxover f_1(p)$ and $N = O_p(\Gamma) = F_p(\Gamma)$. Since each principal factor of the group Γ whose order divides p is, by the condition, f_2 -central, it follows that $\Gamma^{f_3(p)} \\boxover F_p(\Gamma)$. It follows from Lemma 1 that $G^{f_3(p)} \\boxover \Gamma^{f_3(p)}$. Therefore $G^{f_3(p)} \\boxover N$. But this is possible only when $G \\boxover f_2(p)$. We have obtained a contradiction. The theorem is proved.

A screen f is said to be inner [1] if $f(G) \subseteq \langle f \rangle$ for each group G.

<u>COROLLARY.</u> Let f_1 and f_2 be maximal (with respect to embedding) inner local screens of the formations \mathfrak{F}_1 and \mathfrak{F}_2 , respectively. Then the following statements are equivalent:

1) $f_1 \leqslant f_2;$

2) \mathfrak{F}_1 is a subformation of \mathfrak{F}_2 .

<u>Definition</u>. Let f_1 and f_2 be local screens. Define \mathfrak{H} as the class of all those groups which have an $f_i \cdot \mathcal{D}\mathcal{M}$ -subgroup, i = 1, 2. Let \mathfrak{H}^* denote the set of all those groups G in \mathfrak{H} , for which the following condition is fulfilled: If H_1 is an $f_i \cdot \mathcal{D}\mathcal{M}$ -subgroup of G, i = 1, 2, then $H_1 \cap H_2$ is an $(f_1 \cap f_2) \cdot \mathcal{D}\mathcal{M}$ -subgroup of G.

<u>THEOREM 2.</u> Let f_1 and f_2 be local screens and let f_1^* , and f_2^* be local \mathfrak{H}^* -screens such that $f_i^*(p) = \mathfrak{G}_p f_i(p)$ for each prime p, i = 1, 2. Then the following statements are equivalent:

1) $f_1^* \leqslant f_2^*;$

2) Each f_1 -D.M-subgroup of an arbitrary group G from \mathfrak{H}^* , is contained in an f_2 -D.M-subgroup of G.

<u>Proof.</u> Let $f_1^* \leqslant f_2^*$, G be a group from \mathfrak{H}^* , and H_1 be an $f_i - \mathfrak{D} \mathcal{M}$ -subgroup of G for i = 1, 2. By Theorem 1, each f_1 -central principal factor of an arbitrary group G from \mathfrak{H}^* is f_2 -central. Then the subgroup $H_1 \cap H_2$ covers each f_2 -central principal factor of G and therefore, by Lemma 3, $|H_1| \leqslant |H_1 \cap H_2|$. Consequently, $H_1 \subseteq H_2$.

Suppose that each $f_1 - \mathcal{D}\mathcal{N}$ -subgroup H_1 of an arbitrary group G from \mathfrak{D}^* is contained in an $f_2 - \mathcal{D}\mathcal{M}$ -subgroup H_2 of G. Let R/S be an f_1 -central principal factor of G. It is obvious that H_2 covers R/S. Consequently, R/S is an f_2 -central principal factor of G. It follows by Theorem 1 that $f_1^* \leq f_2^*$. The theorem is proved.

A formation \mathfrak{X} is said to be S-closed if it is closed with respect to taking of subgroups.

THEOREM 3. Suppose that \mathfrak{F} and \mathfrak{X} are formations such that $\mathfrak{F} \subseteq \mathfrak{X}$, \mathfrak{F} is local, \mathfrak{X} is S-closed, and each group from $\mathfrak X$ has solvable $\mathfrak F$ -coradical. Let f be a local screen of the formation \mathfrak{F} , f_1 be a local \mathfrak{X} -screen such that $f_1(p) = \mathfrak{G}_p f(p)$ for each prime p, and f_2 be a local screen such that $f_2(p) = f_1(p) \cap \mathfrak{F}$ for each prime p. If each group G from \mathfrak{X} has an fi- $\mathcal{D}M$ -subgroup (i = 1, 2) and each f_2 - $\mathcal{D}M$ -subgroup of an arbitrary f_1 - $\mathcal{D}M$ -subgroup of G is an $f_2 - \mathcal{D}M$ -subgroup of G, then $f_1 = f_2$.

<u>Proof.</u> By Lemma 1.3 of [1], the local screen f_2 is an inner local screen of the formation $\mathfrak{F}.$ It is obvious that $f_2\leqslant f_1.$ We prove that $f_1\leqslant f_2.$ Let us suppose that there exists a prime p such that $f_1(p)$ is not contained in \mathfrak{F} : Obviously, $f_1(p) = \emptyset$. We select a group G of the least order in the class $f_1(p) \setminus \mathfrak{F}$. Then G has a unique minimal normal subgroup K, which coincides with $G^{\mathfrak{F}}$. Since the formation \mathfrak{F} is saturated, it follows that $K = C_G(K)$. Obviously, $O_p(G) = 1$. Consequently, by Lemma 2, the group G is the irreducible group of automorphisms of a p-group N. Let $\Gamma = N \succ G$ be the extension of the group G by means of N. It is obvious that N is an f_1 -central principal factor of the group Γ_* . Let F* be an $f_1 - \mathscr{DM}$ -subgroup of Γ . Then it is easily seen that F^*/N is an $f_1 - \mathscr{DM}$ -subgroup of Γ/N . It follows by Lemma 1.2 of [3] that $(\Gamma/N)^{\text{g}}$ is nilpotent. Therefore, using Lemma 3, we see that F*/N is an $\tilde{\mathfrak{V}}$ -projection of the group Γ/N . Since $\Gamma/N = (F^*/N)$ F(Γ/N), it follows from Lemma 1.5 of [6] that $\in f_1(p)$. But then it is easily seen that $F^* \in \mathfrak{F}$. Let F be an $f_2 - \mathcal{DM}$ -subgroup of the group F^* . Obviously, $F = F^*$. Consequently, F^* is an $f_2 - \mathcal{DM}$ -subgroup of Γ , and therefore

$$G \cong \Gamma/N \Subset f_2(p) \subseteq \mathfrak{F}.$$

We have obtained a contradiction. The theorem is proved.

LITERATURE CITED

- 1.
- L. A. Shemetkov, "Graduated formations of groups," Mat. Sb., <u>94</u>, No. 2, 628-648 (1974). L. A. Shemetkov, "Two trends in the development of nonprime finite groups," Usp. Mat. 2. Nauk, <u>30</u>, No. 2, 179-211 (1975).
- L. A. Shemetkov, "Factorizations of nonprime finite groups," Algebra Logika, 15, No. 3. 6, 648-672 (1976).
- 4. V. A. Belonogov and A. N. Fomin, Matrix Representations in the Theory of Finite Groups [in Russian], Nauka, Moscow (1976).
- 5. B. Huppert, Endliche Gruppen, I, Springer-Verlag, Berlin-New York (1967).
- R. M. Bryant, R. A. Bryce, and B. Hartley, "The formation generated by a finite group," 6. Bull. Austral. Math. Soc., 4, No. 1, 347-357 (1970).
- 7. K. U. Schaller, Einige Sätze über Deck-Meide Untergruppen endlicher auflösbarer Gruppen," Math. Z., 130, No. 2, 199-206 (1973).