
COROLLARY 3. The quas ivar ie ty  genera ted  by the singly defined, t o r s i o n - f r e e  groups cannot be defined 

by a sys t em of quasi identi t ies  in a finite number  of va r iab les .  
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M A X I M A L  S C R E E N S  OF L O C A L  F O R M A T I O N S  

N.  T .  V o r o b ' e v  UDC 519.44 

One of the main problems of the theory  of format ions ,  f r om its conception to the present ,  is the d e t e r -  

mination and invest igat ion of new format ions .  Of par t i cu la r  importance for  p rog re s s  on this quest ion is the 

choice and descr ip t ion  of a method of construct ing format ions .  The f i r s t  s teps in this d i rec t ion  were taken by 

Gasch{~tz in 1963 in the f i r s t  paper  on the theory of format ions  [12], in which he gave methods for  construct ing 

ce r ta in  well-known format ions  via a descr ip t ion  of thei r  local ass ignments .  Then, beginning in 1969, there  ap-  

pea red  seve ra l  additional papers  [13-16] devoted to this p roblem,  most  of which were  due to K. Doerk.  In this 

r egard ,  by a local ass ignment  f of a format ion  J: was always meant  a format ion assigning to  each pr ime  f 

a format ion  l i p )  such that J:~- < f >  , where < f >  is the class of all groups possess ing ] ? -cen t r a l  chief 

s e r i e s  (see,  eog., [11])o 

In 1974 Shemetkov [1] introduced the concept of a s c r een  and suggested a c lass i f icat ion of s c r eens .  Using 

the concept of a s c r een ,  he formula ted  the genera l  p rob lem of construct ing and investigating format ions  in the 

following way. 

If o c is a local format ion,  the p r o b l e m c o n s i s t s i n d e s c r i b i n g  those sc reens  ~ for  which J: .-  < f >  . If the 

given format ion  J: is not local,  then it is natural  to pose the analogous question fo r  the smal les t  local  f o r m a -  

tion {fO~ ~: containing the given one. 

An impor tant  ro le  in the solution of this kind of quest ion is played by the maximal  local s c reens  of f o r m a -  

tions° The main purpose of the p resen t  paper  is to invest igate format ions  of finite groups by means of maximal  

local s c r eens .  

In Sec. 1 we cons t ruc t  f ive new types of format ions  with the aid of two format ions  (these five being the 

fo rmat ion  products  of the i - th  kind: 5r" i ~ \ , / ' ~  L~ 5" ). In special  cases ,  format ion  products  have been 
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studied earl ier  by various authors. In the class of solvable groups, Carter [26] and Huppert [11] studied the 

classes ~ *j ~ and ~Z*~ ~ , Doerk [20] and DtArcy [25] the classes ~:*~ ~ and Jr*e ~ , and Doerk and 

Hawkes [14] and Doerk [13-16] the classes ~ ' 3  ~ , ~** ~; , and ~ ' ~  • 

In Sec. 2 formation products are used to obtain an explicit description of the maximal screens of local 

formations. Note that the problem of determining the maximal screens of formations in special cases was posed 

by Wright [17] and Schmid [18] and in general form by Shemetkov [5, 6]. 

In Sec. 3 we describe the maximal screens of local formations generated by formation products, and in 

Sec. 4 we consider cri ter ia  for loealness of formation products. 

Throughout this paper we will carry out all investigations in some nonempty class of finite groups 

that is closed under the operators ~ , ~ and ~ . Therefore, by a group we will always mean a group 

in ~ , and all considered classes of groups, in particular, the values of screens on nonidentity groups, are 

sublcasses of Z~ . 

A local screen ~ is called: 

1) complete if F//, f (~ )  ~ f/pY for each prime Z ; 

2) ~ -closed if the formation ~ip) is ~ -closed for each prime ~ .  

A subgroup /t of a group ~ is called a M)~ -subgroup [23] if /4 either covers or avoids each chief 

factor of ~ . 

All other definitions and notation used in this paper can be found in Lo A. Shemetkov's monograph [5]. 

The main results of the present paper were published without proof in [7-10]. 

1. F o r m a t i o n  P r o d u c t s  

In this section we introduce and study the classes 

of the i -th kind. 

J:*i ~ (¢~ ~ 5 )  , which we call formation products 

Definition I.I. 

the class of all groups whose ~ -normalizers belong to ~ , and by ~ *z 

projectors belong to ~ .  

THEOREM 1.1. Suppose ~ is a local formation and ~ a formation. 

in ~ is ~(J:) -solvable, thenthe class ~*~ ~ (~-I.2) is a formationo 

The proof of the theorem is easily obtained from the fact that, according to Theorems 15.7 and 21.4 of 

[5], all ~ -projectors and ~ -normalizers of groups with ~ ( ~ )  -solvable ~ -coradical are conjugate. 

Definition 1.2. Suppose ~ i, ~ are local formations with maximal inner local screens ~ , ~ re-  

spectively° We construct classes ~ *i ~ ~i-J,-¢, 5) as follows: 

11 G:e ~*3 ~ if and only if each f *  -central chief factor of t is ~ -central,  where 

Suppose ~ is a local formation and ~ an arbitrary formation. We denote by g ~, 

the class of all groups whose ~ - 

If the ~ -coradical of each group 

t'* is the local 

formation such that f * ( P ) ~ * 2  fl(P} for each prime p ; 

2) ~ ¢ 5:~4 ~ if and only if an ~ -projector of 

3t e 9 if and o .v i f  - p r o j e c t o r  

for each prime p . 

fcz  - ¢ for  s o m e  pr ime  p, then Y d. 

is contained in some ~ -normalizer of G ; 

is a ~:)Jtl -subgroup of ~ and belongs to l i p ?  
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THEOREM 1.2. A fo rmat ion  product  of the th i rd  kind is a fo rmat ion .  

Proof .  Suppose J: and ~ a re  local  fo rmat ions  and ~ ~ ~ is the fo rmat ion  product  of the th i rd  

kind. Suppose /(i "~, Z=4,2 . Obviously, Ge ~ *~ ~? implies G/K~ e ~-*~ ~. Assume that G/K i £ ~ ~ ~ , 

i=/, 2 . It is e a sy  to see  that  each  chief  f ac to r  of the group G/K I f l  Kz is ~ - i s o m o r p h i c  e i ther  to some  

chief  f ac to r  of G / K ,  or  to s o m e  chief  f ac to r  of ~/K~ • There fo re ,  ~/K,  elk z e ~'~ ~ .  

The theorem is p roved .  

It follows f r o m  T h e o r e m  21.8 and a s se r t i on  21.1.1 of [5] that  if the ~ - c o r a d i c a l  of a group G is ¢~ ( ~ ) -  

so lvable ,  then an ~ - p r o j e c t o r  of G cove r s  each ~ - c e n t r a l  chief  f ac to r  of ~ .  

LEMMA 1.1. Suppose ~ i s  a f o r m a t i o n ,  ~ is a subformat ion ,  and the ~ - c o r a d i c a l  of each  group in 

is ¢g(J:) - so lvab le .  If ~ is an a r b i t r a r y  local ~ - s c r e e n ,  ]e is a max ima l  inner  local s c r e e n  of ~ , and 

~Ep) =, ~p~',(p)r~ ..¢: fo r  each p r i m e  /o , then ~0 is a local  ~ - s c r e e n  of ~ .  

P roof .  It  is easy  to see  that  ~ ~ <~P> . Let  us prove  the r e v e r s e  inclusion.  Assume it is fa l se .  Choose 

in the c lass  <~o>--~= a group ff of s m a l l e s t  o r d e r .  Then ~ has a unique min imal  no rma l  subgroup K ,  

which coincides with ~ $ . If ~ is non-Abel ian,  then C# (K) ~ I . Consequently,  ~ e  ~o (K) ~ ~ and t h e r e -  

fo re  its o rde r  is not divis ible  by number s  in ¢r (~:) . But then J'{K) ~ ~ , which impl ies  ~(K)~ .  Con- 

t rad ic t ion .  It  r e m a i n s  to a s s u m e  tha t  K is an Abelian p -g roup  for  some  pecz{~C)  . Then it is e a sy  to see  

that  5'/C~{K) E ~(p) n ~ ~ f ( p )  . Consequently,  0 ~ ~: , which i s  imposs ib le .  

The l e m m a  is proved.  

LEMMA 1.2. Suppose each  group in Z~ has a q~ (3:) - so lvab le  ~ - co rad i ca l ,  where  ~ is a f o r m a -  

. t e* tion with m a x i m a l  inner  local  s c r e e n  ~B If is the local s c r e e n  such that  f * ~ ) =  ~*z]Plp) fo r  each 

p r ime  p , then: 

1) f * is a comple te  local  s c r e e n  of ~: ; 

2) if ~o is e i the r  an inner or  an ~ - c lo sed  local  s c r e e n  of 9 , t h e n  ~ f *  . 

P roof .  Suppose ~ is a group in ~ p l e # ( p ) ,  where  /:, is a p r ime ,  and ~" is an o c - p r o j e c t o r  of ~ .  

Then ~-/0p (~r)_~-Op ( ~ ) /  0p (~} a f ( p )  • Since, by T h e o r e m  3.3 of [5], the s c r e e n  f is complete ,  it follows 

f *  that  l :  cTZ(p) . Consequently,  ~ e l~* (p )  , and is a comple te  local s c r een .  That it is a s c r e e n  of 

now follows d i rec t ly  f r o m  L e m m a  1.1. 

Asse r t ion  2) in the case  where  ~o is an inner  local s c r e e n  of ~= is t r iv ia l .  Suppose ~ is an ~ - c losed  

local s c r e e n  of ~- . Suppose also that  ~ £  ~o(p) , where /~ is a p r ime ,  and f is an 3 = - p r o j e c t o r  of ~ . 

Then ~ £  ~f(p) ~ J: and, by T h e o r e m  3.3 of [5], ~ :¢~(p )  . Consequently,  ~ £ f # ( p )  . 

The l e m m a  is proved.  

LEMMA 1.3. Suppose each  group of ~g has a ~ ( ~ )  - so lvab le  o a - co rad i ca l ,  where  ~ is a fo rma t ion  

with m a x i m a l  inner local s c r e e n  f .  Let  f *  be the local s c r e e n  such that  /~ (p)= ~ f ( p ,  fo r  each  

p r i m e  /o , and let  f be an 5: - p r o j e c t o r  of ~ . Then: 

1) ~7 cove r s  each  f *  - c e n t r a l  chief  f ac to r  of ~ ; 

2) each  chief  f ac to r  of ~ cover ing  the subgroup ~" is - c e n t r a l .  

P roof .  Let  us prove  the f i r s t  a s se r t ion .  Suppose ~ is a connte rexample  of l ea s t  o rde r  and K is a 

. f *  minimal  n o r m a l  subgroup of ~ It is e a sy  to show by.induction that  ~- cove r s  each  - c e n t r a l  chief f ac to r  

. f *  of ~ lying above K The re fo re ,  to prove  1) it suff ices  to show that  fi- cove r s  ]( if K is - c e n t r a l  in ~ . 
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Obviously, ~ 4 : /  . Assumetha t  /( is not contained in ~ ~ . Then K ~ x / ~ - K  , hence  K is ~ -  

central  in G .  Therefore,  ~" covers K , which is impossible.  Suppose K is  contained in ~ ~.  Since , ~ :  

i s  ~r (o c ) -solvable,  i t  follows that  I~(I e i ther  i s  not divisible by the n u m b e r s i n  q~(7) o t i s  a power of a pr ime 

p in ~ ( o  c) o In the f i r s t  case,  by L e m m a  1,2, f~(K)  -- ~ ,  which is impossible .  There remains  the second 

case:  K is  a p - g r o u p ,  p e e r ( F - ) .  Then, obviously, /rK/Cp/~(K]~-f /~(K)¢~(p) .  Consequently, ~ - c o v e r s  

each ~'K -chief fac tor  of /( . hence ~- covers  /( . Contradiction. 

Let us prove the second asser t ion of the lemma. Suppose G is a group of least  order  for which a s se r -  

tion 2) does not hold. Let /( be a minimal normal subgroup of ~ . It is easy to see that to prove 2) i t suf f ices  

to show that K is -cent ra l  in G if ~ covers K By Lemma 1.2, ~ /  If K is not contained in 

G ~ , then K is Y -cent ra l  in G and, by Lemma 1.2, . f~ -cen t ra l  in G , which is impossible.  Therefore,  

K is a f ,group for some prime p in ¢t C ~) . By Theorem 3.3 of [5], ]~ is a complete local screen,  

hence Z/0p, f(P) , and therefore CK!/C  congruently,  CIC  
The lemma is proved. 

THEOREM 1.3. If each group in ~ has a q~(£) "solvable ~ -coradical ,  where ~ is a formation 

with maximal  inner local sc reen  f , then ~ ~ ~ is the format ion  of all groups in which an ~ -projector  

covers only the ~= -centra l  chief factors .  

The proof follows direct ly  f rom Theorem 1.2 and Lemma 1.3. 

Note that in the case where Z~- ~ the format ion ~#~ ~ was studied by Doerk [13] and'by Beidleman 

and Makan [21]. 

LEMMA 1.4. Suppose ~ is a group and /(~,~(2 are a rb i t ra ry  normal  subgroups of ~ .  Then: 

1) if i c is an 9 - p r o j e c t o r  of ~ , t h e n  gK~f) FKz= Iv(/(, ~K~) ;  

2) if H is an ~ - n o r m a l i z e r  of ~ and G ~ is ¢~(~:) -solvable,  then HK, nHXz=/-/(/(~/iz). 

Proof.  The f i r s t  asser t ion of the l emma follows f rom Theorem 2.1 and Lemma 2.5 of [22]. Let us prove 

the second. Obviously, H (t(1 v)K~ ) ~-HK~ F1 HK z . Let us prove the reverse  inclusiou. Assume it is false.  

Suppose ~ is a counterexample of leas t  order .  If ei ther  K~ ~K z ~ / or one of the subgroups /(~,/(2 is 1, 

then, obviously, /-/K, N H/(~ ffi H ( K~ D K~ ) o Therefore ,  K~ D Kz ffi ¢ and K, ~f ¢ , K2 ~ t . Let  jV be a m i n i m a l  

normal  subgroup of ~ contained in K, o Then, by induction, /-/K~ ~ H ~ K  z ffi/-/K 2 , Consequently, HK~ i1/-//(z ffi 

HA/ 0 HK 2 , hence ~ =/( ,  Analogously, i t  is  easy  to see that  f z is a minimal normal subgroup of ~ .  

In view of asser t ion 21.11 of [5], it follows that K~,/(~ are J: -eccent r ic  chief factors  of ~ o Since /(, K z - 

/K~ is  an ~ : - e c c e n t r i c  chief fac tor  of ~ ,  i t  follows eas i ly  f rom Theorem 21.1 of [5] that  / ~  K~Kz=/ .  

Suppose Z is  an a rb i t r a ry  element  o f the  group HK,~H/(z .  Then ~ - ~ , 4 = -  ~ , 4 ,  where ~, ,  ~ E}/, ~f, E K , ,  

~z £ K~' Consequently, /z;'/~, Z z ~ '  -- is  an element  o ~ Hn K~K z = / . Therefore ,  X E / / .  Thus,  /-/K~ n HK z c H, 

which is  impossible .  

The lemma is proved. 

THEOREM 1.4. If each group in ~ has a q~ (J:~) -solvable ~ -coradieal ,  where ~ is a local 

formation (~=/.2) , then 5:~ ~ ~:z is a formation.  

The proof of the theorem is obtained by using Lemma 1.4. 

F r o m  Theorem 1.4 and Theorem 21.8 of [5] we have 
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COROLLARY 1.4.1. If each group in ~ has a ¢~ (~ )  -solvable  ~ -corad iea l ,  where ~ is a local 

format ion,  then ~ ~ ~= coincides with the class  of all groups in which an ~ -p ro j ec to r  coincides with an S: - 

no rma l i ze r .  

Note that  the fo rmat ion  ~ ~ in the case  where 7)/= ]~ and ~ -~ ~ was studied in [13-15]. 

THEOREM 1.5. Suppose ~,  ~ are  local fo rmat ions .  If each group ~ has a ¢~l~ ) -solvable  ~ - 

coradica l ,  then ~ ' ~  ~ is a format ion.  

Proof .  Suppose K is a n o r m a l  subgroup of ~ .  Obviously, Ge~*~_  ~ implies  ~//KC 3=*6 ~ °  

Assume that K 1 , //z a re  dis t inct  minimal  normal  subgroups of G such that G/K Z E ~ ~ ~ ,  Z=¢.2. We 

will prove that G e . Obviously, the -projectors of G belong to for each prime p .  Sup- 

pose H / K  is an a r b i t r a r y  chief fac tor  of G lying above /{, , and /= is some ~ -p ro j ec to r  of G . Since 

G//( I e ~t *s ~ , it is obvious that ~- e i the r  covers  or  avoids each chief fac tor  of ~ lying above /(1 . 

Also, ~/K~¢ ~*~ ~ implies that FKe/K z e i the r  covers  or avoids K, Kz/K z . If FK=/K z avoids K,K.~/K z , 

then it is easy  to see  that ~'f~K~ = / ; hence f avoids K~ . If ,~K~/K z covers  ~ K ~ / K  2 , then ~- / (~  K~K~. 

The re fo re ,  by T h e o r e m  2.1 of [22] K~K= = K~ ($'(~K~). Consequently,  ~'f~K~ = /(I , hence ~ covers  K~ . 

Thus we have shown that  F e i ther  covers  or avoids each chief fac to r  of ~ in a chief s e r i e s  passing through 

Suppose ~ / 8  is an a r b i t r a r y  chief fac tor  of C and ~¶ i s t h e  local s c r een  such that ~*~p)= ~ 2 ~ ( p )  

fo r  each p r ime  p . If ~ /$  is an / ~  - cen t r a l  chief fac tor ,  then, by Lemma 1.3, ~- covers  R//8 . Thus,  

we may assume that R / $  is an ~* - eccen t r i c  chief fac tor  of ~ . We cons ider  two cases .  

1. The subgroup /(I covers  / ~ /S .  Then, obviously, , ~ /~"K~ .  There fo re ,  by Lemma 1.3, /rf~K~ = / .  

By T h e o r e m  2.1 of [22], / = ~ - / = n K ~  $ = ~ '~$  , hence F avoids ~ . 

2. The subgroup K~ avoids R/$ 

In this case  R/$ "~ K~/~/K~ 8 , hence it follows f rom Lemma 1.3 that ~" avoids K¢,~/K~ ~.  

By Theo rem 2.1 of [22], ~ r f ~  I T ~ K  ~ )(~: ~ 8 )  . The re fo r e ,  applying the same theorem again, we obtain 

,~R=(,rnS)([ '~K~DR) ~.8 . Consequently,  jr avoids ,~/S . Thus,  jr is a ~)Jg -subgroup of ~ . 

The theorem is proved.  

2 .  M a x i m a l  S c r e e n s  o f  L o c a l  F o r m a t i o n s  

In [7] we announced the following theorem,  in which are  used format ion  products  of the f i r s t  kind. 

THEOREM 2.1. Suppose ~: ~ $ are cer ta in  format ions ,  ~ is local,  and each group in $ has a ¢~ ( ~ ) -  

solvable Y -corad ica l .  Then: 

1) ~ has a unique maximal  local • - s c r e e n  ~ ; 

2) if ~ is a maximal  inner local s c r een  of ~ , then fEp~ = ( ~  ~ (p ) )~  ~7 for  each pr ime  p . 

This t heo rem is d i scussed  in detail  in [5, p. 22], hence we omit the proof  here .  

We mention only that Theorem 2.1 with ~ =  ~ and ~ - -  J: includes the resu l t s  of Ca r t e r  and Hawkes 

[19] and Schmid [18], and with ~J~--'&"= ~" and J : ~  the r e su l t  of Doerk [20]° 

Definition 2.1. Suppose 

¢~(~=) -solvable  ~ -corad ica l .  

g roup  ~ c £P and ~ -p ro j ec to r  

all p r imes  p E ¢r(~ c)  . 

is a format ion  with local s c r e e n  f and ~' is some c lass  of groups with a 

The s c r een  T p of the format ion  ~: is called ~ -monotone if, fo r  each 

~" of this group,  ,zcKc._/_., ~ always implies  that /(f~"~ ~ L fcP~ for  
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THEOREM 2.2. Suppose ~ ~_ • are  cer ta in  format ions ,  ~ is  local,  ~T is S -c losed ,  and each 

group in f has a C r ( ~ ) - s o l v a b l e  ~ - e o r a d i c a l .  Then: 

1) ~ has a unique maximal  :~ -monotone local ~ - s c r e e n  ~ ; 

2) if ~P is a maximal  inner local s c r een  of ~ , t h e n  ]¢~P~= (~=~z ~fp) )¢ l~  for  a n y p r i m e  p .  

Proof .  By Theo rem 3.3 of [5], the format ion  ~ has a unique maximal  inner local  s c r een  ~ . Let  

be the local s c r een  such that f cp~  (J:~2~/(p)] ~ :~ for  any pr ime p (obviously, ( ~ ~ ~(p) )n  ~' is a 

formation) .  We will prove that  f is an ~r -monotone local s c reen .  Suppose the group ~ belongs to • and 

F is an -p ro j ec to r  of ~ .  Take subgroups fl( and L of G, such that ] Y ~ K ~ L  ~ ~ .  Let  p be a 

p r ime  belonging to ¢EC~). Obviously, ~P~<~ . The re fo re ,  ~ ( p ) ~  . Since /v is an J~ -p ro j ec to r  of K 

belonging to f , it follows that  I= ~ P ~ c / ~ f  cpJ . Assume that N is a normal  subgroup of ~ such that 

]rC~P~c-N and Nr-K lIP' . Then the ~ -p ro j ec to r  FN/N  of the group K/A/ belongs to ~(p) , hence 

/ ( / N e f ( p )  . Consequently, K ~(P~ is the smal les t  normal  subgroup of /( containing ~" ~p~ . Analogously, 

/, F~P~ is  the smal les t  normal  subgroups of L containing ~ ?¢P~. s ince L f¢" (I K i s  normal  in /( , i t  follows 

that K fops- u_ LeetP'. Thus ,  ~ is  an ~ -monotone local  ~ - s c r e e n .  Thus ~ = ~ > ,  follows e a s i l y f r o m  

Lemma 1. t .  

Suppose ~ is an a rb i t r a ry  ~ -monotone local ~ - s c r e e n  of ~ . Let  90 be the inner s c r een  of 

s u c h t h a t  ~cp~=~[p)n~ c for  each p r ime  p .  Then ~ o ~  . Assume that the group ~ be longs to  ~ ( p )  , 

where p £ ~  ( ~ ) .  Let  /r be an ~ - p r o j e c t o r  of ~ . Then p~,c:~ ~_ ~,~p~ hence ~'~D~p) . But then 

~ p ~ .  Thus, ~ . 

The theorem is proved.  

COROLLARY 2.2.1. Suppose ~ ~_ :~ are  ce r ta in  format ions ,  ~= is local,  ~ is ~ -c losed,  a n d c a c h  

group in ~T has a nilpotent ~ -corad ica l .  If ~ is a maximal  inner local s c r een  of ~ ,  then the local  sc reen  

such that  ~[p)= (J= ~ ~(p)) (~ :~ fo r  each  p r ime  p is a maximal  ~ -monotone local  £c _ s c r een  of ~=° 

The proof of this asse r t ion  follows d i rec t ly  f rom the previous theorem and Theo rem 21.5 of [5]. 

3 .  M a x i m a l  S c r e e n s  o f  I n d u c e d  L o c a l  F o r m a t i o n s  

LEMMA 3.1. Suppose ~,  ~ are  maximal  inner  local s c reens  of the format ions  J:,, J:z,  r espec t ive ly .  

Then is a subformation of and only if ;, --" 

We omit the proof of the l emma,  since it is given in [5, p. 65]. 

It is easy  to es tabl ish 

LEMMA 3.2. If ~ is an a rb i t r a ry  nonempty format ion,  then the local s c r een  ~ such that ~ (p ) -  7/p jz 

fo r  each pr ime  /o is a maximal  inner local s c r e e n  of the format ion  ~ . 

LEMMA 3.3. Suppose all minimal normal  subgroups of a group ~ are  solvable.  If 0 has at most  two 

minimal  normal  subgroups and 0/, (~)  = / for  some p r ime  p , then 0 has a faithful i r reducib le  r e p r e s e n t a -  

tion over  a finite field of cha rac te r i s t i c  p . 

P roof .  If ~ is s imple,  the lemma is t r iv ia l .  Suppose /~ is the product  of all minimal  normal  sub-  

groups of ~ . Obviously, M=~m> x/~ , where K~-~/ and ~= I<~>[  is e i ther  a p r ime  or  the product  of 

two dist inct  p r imes ,  and (~.p)= ! . Consequently,  in some finite field of cha rac te r i s t i c  p there  exis ts  a p r i m -  

i t ive /~- th  root  of unityl ~ . Consider  the mapping ~o : m ~  • ~ , where ~ £ K . Obviously, ~ is a 

one-dimensional  represen ta t ion  of /~ with kerne l  /~ .  Let ~o ~ be the represen ta t ion  of ~ induced by the 
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representation ~0 of M . Look at the irreducible constituent (~'(]~) in the upper left corner of the matrix 

(~05(],) , where ~£ G . It is easy to see that K ~ - o M - / ( ~  = / . Therefore, K~C -= / and ff is the de-  

s i red representation of ~ . 

The lemma is proved. 

THEOREM 3.1. Suppose ~,== • and 5 :~  ~ are certain formations. The local screen P such that 

f~p)  = ~Zp ( ~ *, ~ ) for each prime p is a maximal inner local screen of the formation ~ ~ 0 ~  ( ~: ~ ~ ) . 

Proof. Suppose ~ is a maximal inner local screen of the formation ~0~m. ( ~ ~, ~ ) . Since 

, ~ c Z ( ~  ~I ~/~), it follows that ~ 0 ~  (J: ~1 ~ )  ~- ~ ( ~  ~ ~ ) .  Therefore, by Lemmas 3.1 and 3.2, 

]~CP) ~ ~v/p(J:~ ~ )  . Let us prove the reverse  inclusion. Assume it is false. Choose in the class 

7tp(~.~1~)--,~C P) a group ~ of least order. Then ~ has a unique minimal normal subgroup /( , which 

coincides with ~ 7e(F''~. Obviously, 0p (~)= / . Therefore,  by Lemma 3.3, ~ is an irreducible group of 

automorphisms of some p -group N . Let f'= A / * ~ be the extension of ~ by N o It is easy to see that 

does not belong to ~ . Then ~ is a maximal ~ -abnormal subgroup of /" o Therefore, by Lemma 13o3 

of [5], ~ is S: -critical in F .  Consequently, an ~ -normalizer H of ~ is an ~= -normalizer of 7" . 

It follows that 7"e ~q~ ~ c_ ~f07~ (~: ~ ~ ) .  Therefore, $~,T'/A/e/(p). Contradiction. 

The theorem is proved. 

THEOREM 3.2. Suppose each group in ~ has a ~ l  S:) -solvable ~ -coradical,  where ~ is a forma-  

tion with maximal inner local screen ~ .  Suppose ~ is a formation such that ~ z O  == ~--c5:~- z ~(p)  for all 

primes p e ¢z (~:) . Then the local screen f such that 

for each prime p is a maximal inner local screen of the formation ( ~ 0 ~  (5:* z ~ )  . 

Proof.  Sy  T h e o r e m  3.3 of ( }  ",  9 )  has a unique m ximal inner local  s creen  . 

then } ~ ~ = $ and therefore ~f0¢rr~ ( ~ ~z ~ )~  ~ ,  where ~ is a formation of identity groups. Con- 

sequently, ~(P) ~ ~ for all primes p . 

If ~ 4 ~ , then, in view of Lemmas 3.1 and 3.2, fop) ~-~p(~=*z ~)  for all primes p . Suppose ~ is 

a group of least order in the class ~ p  (} *z ~ ) " ~ cp} and ~" is an ~ -projector of P . C onsider the reg-  

ular wreath product, , r ' . p ~  ,where  l P I - p  • Then /~=A/*~ ,whore N is an elementary Abelian 

p -group. Obviously, N = ~ ( r  ") . If ~¢p) - ~ , then ~" is an } -projector  of ~-g/ , hence an ~: -projec-  

tor of /" . Consequently, / -£  5: *$ ~ ~ ~o~m (~:~z ~ )  and ~_~e/~"  (/~) • f (p} . Contradiction. Sup- 

pose ~ ( p j # ~  . Then it follows from Theorem 15.7 of [5] and Lemma 2 of [23] that T/V / is an ~ -projec-  

tor of r e  Since ~ 'Ne  ~Z z ~ -  ~ , it follows that ~ ' a ~ z  ~ o Therefore, ~,v tr"/.E'p ,f~) ~£ (p )  . 

Contradiction. 

The theorem is proved. 

LEMMA 3.4o Suppose ~ ,  ~ are formations with maximal inner local screens ~ ,  ~ o Then the 

local group function ~P such that 
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for each prime p is a local group function of the formation J:~ ~S "~z • 

Proof.. We will show that ~ ~P>= ~ ~ ~ for the group function ~P indicated in the lemma. 

Suppose ~ is a group of least order in the class (~ i~  ~)K <~P> o Then ~ has a unique minimal nor-  

mal subgroup /~ , which coincides with ~ <~P> o Obviously, ~ is ~/~ -eccentric,  where ~ is the local 

group function such that ~(/~)-- ~ ~ ~ 'p)  for each prime p o But then, 

Consequently, ~E<~p> , Contradiction, 

It remains to show that ~ "3 ~:, -~ < ~ >  • This follows by induction, inasmuch as ~fp)np~fp)c~<p, 
for each prime /~ o 

The lemma is proved. 

LEMMA 3.5. Suppose each group in ~ has a solvable ~ (p) -coradical for all primes p e w ( ~  ) , 

where ~=~ is a formation with maximal inner local Screen ~ o Suppose ~ is a formation with maximal 

inner local screen ~ . If J:~ c_ ~ ,  ,nd ~ i samaximal inner ioca l sc reenof theformat ion  ~ 0 ~  ~'"+*:,¢, ~z ) 

then: 

1) ~O~f ,where is the local group function of the formatiori ~:~ ~ ge , Such that 

for each prime p ; 

2) ~ =  ~ ,where  ~P 

the group function in 1). 

Proof .  Suppose ~ ;  is the local screen such that ~ p ~ -  ~ ~ ~ (p, 

local group function such that 

is the local screen such that ~(p)= ~p  ~0~m q / p )  for each prime p and ~0 is 

for each prime p and ~ iS the 

for each prime p . Then, by Lemma 3.4, ~ is an inner local group function of the formation 7, ~ ~z " 

I~t  us prove the f i rs t  assertion of the lemma. Assume it is false. Then there exists a prime p such 

that ~(p) is not contained in ffF) , where ? is a maximal inner screen of the formation ~ ( ~  ~=z)' 

Choose in the class @(p) ". F(p) a group C- of least order.  

If ~(P) = ~ , then ~lp) = ~1 e3 ~z . Obviously, Op(O)= / . Consider theregular  wreath product 

F= p T ~  , where l p ] = p  . Then P ' -  N ~ G  , where N is an elementary Abelian/~ -group. Obviously, 

N=~(/")=~(T) o Since ,F'/Op(/")E~(p) , i t  follows that f 'E~(/~rrL(~:,* 3 ~z ) ° Thus, G -r/Zp(m 
£ ~Cp). Contradiction, 

Assumethat  ~(p)¢ ~ If ~E , then ~ e ~ O ( p ) n ~ ; ( p ) ~ ( p ) .  But J :2c -~0~( J : l * j~z )  . 

Therefore, by Lemma 3.1, ~(p)c-rP(p) ° Consequently, GE~(p) . Contradiction, Thus, we may assume 

that ~ does not belong to ~ ;  (P) 

If has two distinct minimal normal subgroups K 1 and ]~z such that 

then C//KiE ~{p) and therefore ~ E~(p) , which is impossible. If ~ / K  i 

then ~ / / ~ . e ~ l p ) .  Consequently, ~ E f ; ( F ) .  Contradiction. 

does not belong to !P(P), ~=¢, 2 
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Assume that ~ has at most  two minimal  normal  subgroups.  If ~ has exactly two dist inct  minimal 

normal  subgroups /(1 and K 2 , where ~/K~e~(p/ and ~/K 2 does not belong to ~(p) , then ~/K~ ~ (p) 

and ~/Ke e f ; (p)  . Obviously, /~ and K z are  subgroups of the ~ (p~ -corad ica l  of ff . Consequently, 

/(7 and K z are  solvable and 0~, ( ~ ) = / .  The re fo re ,  by Lemma 3.3, ~2 i s  an i r reducib le  group of auto- 

morphisms  o f  some p - g r o u p  N . Let  T '=2/~ ~ be the extension of ~ by N .  since ]"/N ~ ~e.,g/*3 ~z 

and N is ~ - cen t r a l  in C ,  it follows f rom Lemma 3.4 that /" • ~ ~ ~=~ . There fo re ,  ~-~ ~'/N e ~'(iv). 

Contradict ion.  

The case where ~: has a unique minimal normal  subgroup is handled analogously. 

Let us prove the second asser t ion  of the lemma.  Let ~ be the local s c r een  such that ~ (t:,)= 

~ 0 ~  ¢~Z/ for  each pr ime p . Since, according to 1), we have ~ ~ f , it follows that ~ ~ ]6 . Obvi- 

ously, (~>=<~> o Consequently, < ~ > _ ¢ A - ~ ( ~ : ~  ~ )  . On the other  hand, it follows f rom the definition 

of ~ 0 ~  (J~ *~ j z  ) that ~0Zra  ( ~  ~s J:~) ~ < ~ >  . Asser t ion  2) is now obvious, in view of Theorem 3.3 

of [5]. 

The lemma is proved.  

THEOREM 3.3. Suppose ~ -~ ~z are  local format ions  and ~ , ~  are maximal inner local  s c reens  

of ~ , .Fz , r espec t ive ly .  If each group in ~ has a solvable ~IV) -coradica l  for  all p r imes  tv ¢ ~  ( ~ / )  , 

then the local s c r een  f such that 

L 

for  each pr ime p is a maximal  inner local s c r een  of the format ion {~O'Zm [S:t .~ ~:2). 

Proof .  Let ~:~-~- ~:,*t ~:~ and $ -  E~ocm (~1~.~ ~ ). By Lemma 3.5, ~ posses ses  a unique maximal inner 

local s c r een  f such that f(p~= 7~p ~o~rL ~ltv) for  each pr ime fl , where ~(p)=((~,.(~/~ (p/)N ~*)O~z (p, for  

each pr ime p . There fo re ,  to prove the theorem it suffices to c lar i fy  the s t ruc tu re  of ~ozrn ~ Cp) for  all 

p r imes  p .  

Suppose ~¢p~--  ~ , where p is a p r i m e .  Then ~(P)=~z(P' , h e n c e  ~0~-~(p~= ~ fp) . Since 

is a complete sc reen ,  ~ (p) ~ "¢1 

Assume that fC,,a~-=-~ lp) , where Z is a pr ime.  I f  ~ (/o)= g¢ , then ¢~(p) = ~ " ,  hence ~ (p) = "~#Zp ~:~. 

Suppose ~ (P~  ~ . We will prove that ~-~ pozm ~(p). Obviously, fo~rn ~(p7 c_ S: ~ . Let us prove 

the r e v e r s e  inclusion. Suppose X is an a rb i t r a ry  group in ~* . Choose in the class  ~1 " ~  (P) a group G 

of least  o rde r .  Then ~ has a unique minimal  normal  subgroup /( , which coincides with ~ P ~ .  Ob- 

viously,  K is solvable and ~p(G) ~ ?. There fore ,  by Lemma 3.3, G is an i r reducible  group of automorphisms 

of some ,p -group / q .  Let / ' - N  ~, G . Since FIN ~- ~ ~ ~(p) , we have /~e ~ "  , by vi r tue  of I .emma 3.4. 

It is easy  to see that f ' e  so (p) .  Let  ~ = p x X . Obviously, ~ e ~p(p) ~_ fy~m ~:p). There fo re ,  ){ e ~O~rn ¢(p) 

and 9 ~= ~0~ ¢~Z' • It follows that ~(p)= Tp ~: *. 

The t heo rem is proved.  

LEMMA 3.6 .  If ~ i s  a:nonempty format ion,  f~ i s  some s e t  of p r i m e s ,  and (q¢~ ~3 ~ ) j :  .-  ~ , then the 

local s c r een  /~ such that 
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I ~ , if pE~', 

for each prime p is a maximal inner local screen of the formation (~¢, ,ci ~) ~ o 

,p, roof. we ,.ill prove that (~,n ~Y) ~ = ~f>. Obviously, (~, n ~)~ ~ <f> ° Let us prove that 

< f ~ ( q ~ , f l ~ ) J ;  ° Assume this is not so. L e t G  be agroup  of least  o rder  in the class < { > "  ( ~ , n  ~ ) ~  

Then G possesses  a unique minimal normal  subgroup K . Suppose 0or, (G/K) = L / / (  o Then G/L e 

a~ad L / K e  ~¢~, ~ Z~ . We will assume that L is a subgroup of least  order  such tha t  ~ / Z e  ~: and L / / ( e  

If K is non-Abelian, then ~ IK) -- / and therefore G 6 (~¢~, n Z~) J~, which is impossible.  Suppose K 

is Abelian. If g ~ ,  ¢~ i f ,  then L ¢ ~¢, 0 Z~ and therefore G6 (~¢~, 0 Z~) ~o Contradiction. If /~'e~e n ~ ,  

then ~/C~ (K}:£ ~: . Consequently, ~ / ~  (K)O/,  e ~ and ~ _ ~  (K) , in view :of the minimati ty of L ° By 

the Sehur -Zassenhaus  theorem, /( has a complement N in L o It is easy to see that h / is a normal  ~ '  -Hall 

subgroupof  L But then A/ is a n o r m a l  subgroupof  G . Consequently, A / - [  hence ~ ¢ ( ~ 0  ~ ) ~ : = ~ =  

(~¢ ,  ~ ~} 5; . Contradiction° The lemma now follows from Theorem 3,3 of [5], 

The lemma is proved. 

T ~ O ~ M  3.~. Suppose ~i -~ ~ a~e local formations and ~ , , ~  a~e maximal i = e r  local s c r ~  

of ~, , ~ , respectively.  If ~ is the set  of all ¢/( ~z)-s°lvable groups in ~ , then the local screen  

such that 

for  each prime p is a maximal inner local screen of the formation ~/,~rn (J:,~, ~:. ). 

Proof.  I~t  ~=  ~0~nt J:" , where 5:*= ~*~4 ~z By Theorem 3°3 of [5], the formation ~ has a unique 

maximal inner local screen  ~ ° 

Suppose ~ ~F) ~- ~ , where p is a pr ime.  We will prove that ~ip,=~(p) ° Obviously, }z ~ ~: 

Therefore,  by Lemma 3 .1 )~z  ~</~ , hence ~z(p)~-/~tp, o Suppose G is a group in 3 : ' .  Since ~ (p) '=~ 

it follows f rom Lemma 1.3 that an ~ -projector  of ~ covers each chief factor  of ~ whose order  is divisible 

by p . But then mu ~z -normal ize r  of ~ covers these same factors .  Therefore ,  by Theorem 21.1.1 of [5], 

each of them is ~:. -centra l .  Therefore,  ~ ¢ (~F '  0 ~ )  ~z fP) . Thus, ~*'_c (~F" o Z,~,) ~ ~/:,) , hence ~ 

Wp, ~ ~ )  ~ I~  . ~ut then, by Lemmas ~.1 and ~.~, A ~  ~- ~ 0') '  
, Since o c ~ ~ , Assume that ~ t p ) ~  J~, where p is a pr ime,  We will prove that 7~lp)=~p~ :* . ~* 

it follows f rom Lemmas 3.1 and 3.2 that r ~ p ) ~  ~ "  . Let ~ be a group of least  o rder  in 2 ~ p ~ "  ~{p) . 

Obviously, ~ e ~* . 

Suppose ~ ( p ) =  ~ . Consider the regular  wreath product F = P ~  , w h e r e  I P ] = p  . Then /"~-A/~ ~ , 

where 2/ is an e lementary  Abelian p - g r o u p .  Obviously, N - - ~  { / ' ) .  Suppose F is an ~ -projector  of ~ . 

Then, obviously, ~= is an ~ -projector  of F A /  , hence F is an g~ -projector  of 7' . Since ~ e  J:~ , it 

follows that ~--~/-/ , where /-/ i s  some J:z -normal ize r  of ~ . By Theorem 21.6 of [5], / ' /=  ~0/ ' /~  , 

where is some ~ -normal ize r  of F .  Therefore ,  F¢ .~" ~ 3: , hence ~ " / " / ~  (/"} eF(P) . Con- 

t radict ion.  
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Assume that  ~ (p)'~ ~ . We will f i r s t  prove that the class ~1 " ~ (f)  contains a group X suchthat :  

p '  1) X has a unique minimal normal  subgroup whose order  is a -number;  

2) Z (X} is a proper  subgroup of the ~ (p) -coradical  of X . 

Choose in the class ~1 x~ (fi,) a group Y of least  order .  Then Y has a unique minimal normal  sub- 

group / ( ,  which coincides with y ~  ~f) .  Obviously, Op [ Y) = / . Suppose K is  a ~ -group for  some pr ime 

~ F  and 5 / e ~ ( ~ )  . Let ~ b o a  ~ - c o m p l e m e n t  of Y and /14 a Y-modu le  over a field of ~ elements 

induced by an irreducible t r ivia l  ~ -modulo over the same field. Then ~ is a principal indecomposable 

module and its socle is an irreducible tr ivial  ~ -module over the field of ~ e lements .  Obviously, M is a 

fa i thfu lmodule .  Let I ~ M ~ Y  o Sincethe  module /4 is faithful, Z ( X ) ~ l g  . But the socle of the module /~ 

is the unique minimal  normal subgroup of X . Therefore ,  Z(X) = 34 and requirement  1) for X is sat isf ied.  

Since X g0') is not contained in /14 and Z(X) ~_ g ~ P ~ ,  it  follows that Z(X) is a proper subgroup of X ¢'ct'~ 

and condition 2) for  X is sat isf ied.  

Let X * ~ X x ~ °  Obviously, the subgroup ~ X ' f f  is an ~ -projector  of X* . suppose ~ - ~ , c p , ~  

X = / . Then, by Lemma 1.1 of [14], ~ ' ~ c _  Z (X) x ff . Consequently, X/Z(X)" 'X~/Z (X) x 7 £ ~  ~p) , 

which contradicts the fact that Z (X) is a proper subgroup of X ~ ~P' Thus, we may assume that  ~ * ~ /  @ • 

By Lemma 3.3, X possesses  a faithful i rreducible X -module h / over a field of p e lements .  There -  

fore,  since F * ~ /  we have C o , ~ (F ~) = ] Suppose ~ is a regular  ff -module over the field of /~ elements .  

Consider the tensor  product ' /~ ~-- A/@/d with operator  (/L @ ~) (X,]) =/zX ® 7]  , where Z e R  , z e  %/, x£ X, 

. X ~ A t -  . .  . ~£ G Let P4~I X be the res t r ic t ion  of the -module to X . Then /4"[~ .v A/~ . • N There-  
IGI 

x (X G). Then, by Theorem 15.7 of [5] and Lemma 2 of [24], ~ is an fore,  L°M. (~*)=I . Let /"*'=/t4 ~ ~ 

projector  of the group ~ 24* , hence ~ is an jzv -projec tor  of F.~. Obviously, X~e ~ F z . There -  

fore,  $', ~- ~/~ , where / ' /t  is some ~ -normal i ze r  of X* . But then /%= X* n F/~ for  some ~z -normal ize r  

• , X ~" of Z "~ Therefore ,  / '~6 {~0ztn (% ~, oc 2 ) It is easy to see that /v/* contains an -submodule over the 

field of p e lements  of ~" isomorphic to the X ~ -module 3 / ~ / G  ' the kernel  of which is  ~ ,  and the r e s t r i c -  

tion M*I~ of M* to ~ is isomorphic to R @ . . .  @/? . It follows that M ~ is a faithful X* -module 
4irn ,~ l t  

over if '° Therefore ,  M~=~(F~ and X ' ~ ' * / M * e T Q p ~  . Thus, f f '~X~/X£IQp) .  Contradiction. 

The theorem is proved. 

THEOREM 3.5. Suppose Y, C_ JZz are local formations.  If eachgroup  in Z)~ has a q~(~) -solvable 

~:~ -coradical ,  then the local sc reen  f such ~ a t  

for each prime : is a maximal met local screen of the fo~maUon ~:0,~ { ~ 5 :~ ). 

Proof. Suppose :, is aprime. If : ~ :: " ~ :, > ,then ~ S:~= ¢ . hence ~(0~,~ ( :, ~-,5~= ¢'. Con- 
sequently, 7~(p) --- : , where 70 is a maximal  inner local sc reen  of ~:o'ttn ( :, ~'~ ~z )" 

~ s u m e  that : e¢ (~,). Then, obviously,  #~:=_Z~(~, 5 ~ ) . We will prove that Zp  ( ~ ~) =_:~:. 
Choose in the c lass  ~ . ( ~ ,  5 9~ ) \ : ( : '  a group C of least  order.  Obviously, 0~ (Sl = : and 9e ~, *, ~ . 

Consider  the regular  wreath product ~ ' = P ~  ~ , where [Pl - p  . Then F = N  ~ , where 3] is an e le-  

mentary Abelian p -group. Obviously, N -  5 ( Y ) .  Suppose F is an Jzz -projector  of / " .  Since ~:¢ ~-~2 , 
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it follows f rom Lemma 3.1 that 7 "f~ lp) ft. f q,) ~: , where  ~ , ~ are  maximal inner local s c r e e n s  of ~:/ , 

respect ive ly .  Consequently,  by Theorem 15.7 of [5] and I_emma 2 of [24], ~-N is an ~z -pro jec tor  o f  7 ' .  

Since "~ is  a complete sc reen ,  ~ - N ¢ ~ ( f ) .  Moreover ,  F /A/ -~ -~  ~ f ~ z  and ~vN covers  N .  The re -  

fore ,  it is easy  to see  that ~rN i s a  ~ J g  -subgroup of / " .  Thus, . Z ' ~ ~ - g ~ o ' ~ m ( ~ ; z )  . The re -  

fore ,  ~ ' / / ~ f  (7") ~/'(/:,, . Contradiction. 

The theorem is proved.  

4 .  C r i t e r i a  f o r  L o c a l n e s s  o f  F o r m a t i o n  P r o d u c t s  

THEOREM 4.1. Suppose ~ =  ~" and J : ~ O  are  cer tain formations,  where S: is local.  Then ~ 

is local if and only if 3= *t ~ = q" . 

THEOREM 4.2. Suppose each group in ~ has a solvable ~ -coradical ,  where ~ i s  a formation with 

maximal inner local s c reen  ~ .  If ~ is a formation such that ~ c  ~ ffi ~pO ~- S:~ ~P(f) for  all p in ¢7I~:) 

then ~*z  ~] is local if and only if ~ 2 ~ f f i  ~ '  

THEOREM 4.3. Suppose ~f f i¢  and ~ ~ ~ are  cer tain local format ions ,  where ~:,-~TZ . Then 

Z *~ ~z is local if and only if ~ / ~  ~:z = q~ • 

The proofs of Theorems 4.1-4.3 are  of the same type and fo!low easi!y f rom Theorems  3.1, 3.2, 3.5, 

respect ively,  and Lemma 3.1. 

THEOREM 4.4. Suppose ~ c_ ~2 are  format ions  and ~ , 5 are  maximal inner local sc reens  of 

Jr,, Jz2 respect ive ly .  If each group in ~ has a solvable ~ (p) -coradica l  for  all p r imes  /0 in ¢i" [ ~ )  , 

then ~ "3 ~z is local if and only if ~ p  ( ~  ~a ~2 ) -- 71 "3 ~z for  all p r imes  p such that ~ (p) ¢ S: I . 

Proof .  If J:i'3 ~2 is local,  then, by Theorem 3.3, i~p (Yl ~3 ~z ) = ~, ~3 ~:2 for  all pr imes  p such that 

(p)~ ~ . Let us prove the converse .  Suppose ~/'p ( ~  *'3 ~z ) = J:l "~ Jr$ for  all p r imes  p such that 

(p)~ .f:, . Choose in the clas s ~O~m ( ~  ,$  3:2 ) "- (7~ ,~ ~z ) a group ~ of least  order .  Then ~ has a 

unique minimal normal  subgroup K . If K is non-Abelian, then C6 (K) = t , hence C El{p) , where p/]K] 

and : is a maximal m e r  local screen of ( By Theorem 3.3, g e which is impossible .  

Assume that K is an Abelian f -group, where p is a prime. If ~ iF) ~ J~, then ~ ~ ]Tp ( Y,~ ~ ) = c .  ~ ~: z. 

If ~ ~) - ~ , then ~ e  [(p)f~(p)~ &" ~ °ca" Contradiction. 

The theorem is proved.  

THEOREM 4.5. Suppose there exist  some se t  of p r imes  ~ and a nonempty formation ~ such that 

( ~  ~ 7}/) Jr = J: • Suppose J:, ~- ~Z are  formations and ~ , ;fz are  maximal inner local sc reens  of 
/} 

' J~z ' respectively* If e achg roup  in ~ has a solvable t,(P' -coradica l  for  each p e ~ ( ~ )  and if 

either ~ = ~ # , n ~  or ~=(qe,¢~72)~: ,then J:,%~:z isalocalformation.  

Proof .  If J:~= 0~, ~ q]/ , then 3:~ has a maximal  inner local s c reen  ~ such that 

If ~,= (qo' (1 T/) J: , then, by Lemma 3.6, the local s c r een  ~ such that 

100 



fo r  each pr ime  p is a maximal  inner local s c r een  of ~; . It is obvious that in each of the indicated cases  

~ c p ) - ~  if pe6 ' ,and~( /o )=  ~l*z~{p) if p c 6  . Let  e t "~m(£ , , 3F  z ) bethe local  fo rmat ion  gen-  

e ra ted  by ~*a  J=z , and let  f be a maximal  inner local s c r een  of this local format ion.  Let  G be a group of 

leas t  o rde r  in the class  ~a~m (7 ,*s  F 2 ) x ( ,~, "3 ~=z ) • Then  G has a unique minimal  normal  subgroup /( , 

which coincides with ~ (~i*~ ~ ) • Let  7g¢ * be the local s c r e e n  such that ~ ;  ~p) = ~ *z/;  (P) for  each pr ime 

- eccen t r i c  in G , the t heo rem is obvious. Assume that K is /f] - c en t r a l  in G . Then, 

by Lemma3.1, for some prime f in dividing / / ( I .  By Lemma3.4, P c  fz 

which is impossible .  If f a ~  , then ~ l p ) - - £  and, by Theorem 3.3, ~/C$ (/~) e f z (p )  . The re fo re ,  by 

Lemma  3.4, G ¢ ~:1"~ ~z • Contradiction.  

The theorem is proved.  

THEOREM 4.6. Suppose ~;Z c_ .~ are formations and A ' 5 are maximal  inner local screens of 

J:,, ~ , respectively. Suppose Z~ coincides with the set of all e (~) -solvable groups in ~ . Then 

Jt 1~-e E z is local  if and only if ~ p ( ~ * ~ J = z  ) -- ~1 ~'~ J:z for  all p r imes  p such that ~ ( o ) @ ~  . 

The proof of the theorem is analogous to that of T h e o r e m  4,4. 

Following [13], we say that a local  fo rmat ion  ~:1 is s t rongly  embedded in some local  format ion J~z , 

and we wri te  J~7 <" ~z , if in any group ~ having a solvable ~ -corad ica l  (g=/, 2) an ~, - p r o j e c t o r  of G 

is contained in some ~z -p ro j ec to r  of L 2 . 

THEOREM 4.7. Suppose ~ , ~ are  local format ions  and each group in Z~ has a solvable ~/ - eo r ad i -  

cal l i=/ ,2)  . If ~,<-: ~:~ and ~:~ -~ ~ , then ~ ~ is the unique maximal  (with r e spec t  to inclusion) local 

subformat ion of ~:~ ~e# E z . 

Proof .  Obviously, ~ ~ is a local subformation of ~ ~2" • Suppose ~: is an a r b i t r a r y  local  f o r m a -  

tion contained in ~ ' ~  ~2 with maximal  inner  local s c r een  f . In view of Lemmas  3.1 and 3.2, to prove the 

t heo rem it suffices to show that 7~(f)c~f 5: z fo r  each pr ime  f . Assume this is not so. Let ~ be a group 

of least order in the class f(p)- ~/~ ~2 , where p is some prime. Then ~ has a unique minimal normal 

subgroup /( , which coincides with ~ 7~r f~ . Since 2Zp 5r~ is  a sa£~.rated format ion ,  /( has  a complement  /g 

in ~ and K=~[K).  Since /v/@ is  solvable,  i t  follows f rom Theorem 15.7 of [5] that  2# pos se s se s  an ~ - 

p r o j e c t o r  F .  Obviously, ~ ( ~ ) = / .  Suppose K is  an ~? -group fo r  some p r ime  ~ / ~  . Then, by L e m m a  2 

of  [24], the subgroup 7=C~ (jr  ~ ~ ' )  i s  an ~ - p r o j e c t o r  of ~ . We cons ider  two cases .  

1. C, (z ;, / 

Since N r- ~ ,  p does not divide [ ~ : ~ 1 , and f]5 = / ' i t  follows f rom L e m m a  2.2 of [13] that 

posses ses  a faithful i r reduc ib le  ~ -module N over  a field of ~ e lements  such that  the r e s t r i c t ion  N/,# 

of the module M to N has a quotient module N/N o on which M acts identically.  Let /"=NA ~ . Since 

Z ~- M and Nit 4 has a quotient module on which /Y acts identically,  we have IF ~'~p', N~ c ~/ . Sup- 

pose ~-* is an J:~ -p ro j ec to r  of I-A/ . Then, by Lemma 2 of [24] and Theorem 21.10 of [5], T*n2/~/  . Ob- 

viously,  F *  is an ~ -p ro j ec to r  of P .  Since Pe~F~*~ Ez , it follows that 7=*~/  , where H is some Yz - 

n o r m a l i z e r  of f " .  By Theorem 21.1 of [5], /4 e i ther  covers  At or  avoids A t . If ]-] venee r s  N , then, by 

Theorem 21.1 of [5], N is fz -central f', hence G=]'//NE~ (f)~ g'~p "~2 ' which is impossible. If ~/ avoids 

At, then ~7"~ At = / , which contradicts the fact that E*r]/~ ~= / 
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2, c K +/. 
Obviously, ~-C~ IF ~'(~') _c/4 +, where 

e i ther  covers  or  avoids K o If /4* covers  

G~ ~p ~ z .  Contradiction.  If /4 ~ avoids / ~ ,  then 

The theorem is proved.  

COROLLARY 4,7.1. Suppose each group in ~X 

format ion  (~'-/ ,~) , ~ , '~J:z  and ~ ~Z . Then 

]-/~ is some ~ -no rma l i ze r  of ~ . By Theorem 21.1 of [5], /4 ~ 

K , then, by Theo rem 21.1 of [5], ]< is } z  - cen t r a l  in G , hence 

C~(,r#tf') ~! and the theorem is t rue  by vi r tue  of par t  1. 

has a solvable ~i -eorad ica l ,  where ~ is a local 

is local and Only if 

In conclusion, the author would like to express  his s incere  grat i tude to  P r o f e s s o r  L. A. Shemetkov, under  

whose guidance this paper  was wri t ten.  
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