COROLLARY 3. The quasivariety generated by the singly defined, torsion-free groups cannot be defined

by a system of quasiidentities in a finite number of variables.
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MAXIMAL SCREENS OF LOCAL FORMATIONS

N. T. Vorob'ev UDC 519.44

One of the main problems of the theory of formations, from its conception to the present, is the deter-
mination and investigation of new formations. Of particular importance for progress on this question is the
choice and description of a method of constructing formations. The first steps in this direction were taken by
Gaschiitz in 1963 in the first paper on the theory of formations [12], in which he gave methods for constructing
certain well-known formations via a description of their local assignments. Then, beginning in 1969, there ap-
peared several additional papers [13-16] devoted to this problem, most of which were due to K. Doerk. In this
regard, by a local assignment )[' of a formation ¥ was always meant a formation assigning to each prime P
a formation #(p) suchthat § = <f> , where <f> is the class of all groups possessing 7 -central chief
series (see, e.g., [11]).

In 1974 Shemetkov [1] introduced the concept of a screen and suggested a classification of screens. Using
the concept of a screen, he formulated the general problem of constructing and investigating formations in the
following way.

If & is a local formation, the problem consists indescribing those screens /‘ for which § = <f > . If the
given formation § is not local, then it is natural to pose the analogous question for the smallest local forma-
tion £ 7£0'l/71« § containing the given one.

An important role in the solution of this kind of question is played by the maximal local screens of forma-
tions. The main purpose of the present paper is to investigate formations of finite groups by means of maximal
local screens.

In Sec. 1 we construct five new types of formations with the aid of two formations (these five being the
formation products of the ¢ -th kind: F*; é \\ »/<{«5). In special cases, formation products have been
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studied earlier by various authors, In the class of solvable groups, Carter {26] and Huppert [11] studied the
classes 7 %, N and Z+, 7 , Doerk [20] and D'Arcy [25] the classes §+, 5"? and §+, ? » and Doerk and
Hawkes [14] and Doerk {13-16] the classes §#; § , €% & ,and 7'#;§.

In Sec. 2 formation products are used to obtain an explicit description of the maximal screens of local
formations. Note that the problem of determining the maximal screens of formations in special cases was posed
by Wright [17] and Schmid {18] and in general form by Shemetkov [5, 6].

In Sec. 3 we describe the maximal screens of local formations generated by formation products, and in
Sec. 4 we consider criteria for localness of formation products.

Throughout this paper we will carry out all infestigations in some nonempty class of finite groups u
that is closed under the operators § , & and E:rfu .- Therefore, by a group we will always mean a group
in % , and all considered classes of groups, in particular, the values of screens on nonidentity groups, are
sublcasses of ¥ .

A local screen f is called:

1) complete if 7, £(p) = f(p) for each prime p;

2) § -closed if the formation / (2 is § -closed for each prime p.

A subgroup /# of agroup & is called a D4 -subgroup [23] if H either covers or avoids each chief
factor of & .

All other definitions and notation used in this paper can be found in L. A. Shemetkov's monograph [5].

The main results of the present paper were published without proof in [7-10].

1. Formation Products

In this section we introduce and study the classes & ¥; sg (1= i<5) , which we call formation products
of the ¢ -th kind,

Definition 1,1. Suppose § is a local formation and 1? an arbitrary formation. We denote by ¢ * 19
the class of all groups whose £ -normalizers belong to ‘9 ,and by 5%, fg the class of all groups whose § -
projectors belong to Y? .

If ‘@ = & , then we put §*éﬁ9=¢ , E=142.

THEOREM 1.1, Suppose § is a local formation and @ aformationf If the § -coradical of each group
in Z is %(§) -solvable, then the class §*; % (¢=12) is a formation,

The proof of the theorem is easily obtained from the fact that, according to Theorems 15.7 and 21.4 of
[5], all § -projectors and § -normalizers of groups with 7 ( §) -solvable § -coradical are conjugate.

Definition 1.2. Suppose & ., 5@ are local formations with maximal inner local screens / . £ re-
spectively. We construct classes §*; 5@ (é=34,8) as follows:

1) FeS*, S@ if and only if each f* -central chief factor of & is %;) -central, where f " is the local
formation such that f'*(p) =§#,f(p) for each prime p ;

2) be§ * v % if and only if an § -projector of & is contained in some 1@ -normalizer of & ;

3) FeS =, 5? if and only if a I;v -projector of £ is a DM -subgroup of & and belongs to /(@
for each prime p .

I f(p)= ¢ for some prime & ,then &+, 12;-%
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THEOREM 1.2. A formation product of the third kind is a formation.

Proof, Suppose S and fg are local formations and £ * 5@ is the formation product of the third
kind. Suppose A; <, i=1,2 , Obviously, Ge & *, %y implies G/K; € S*; ¥y, Assume that G/K; € §», %
(=12 . It is easy to see that each chief factor of the group G/ K NK, is G ~-isomorphic either to some
chief factor of & /K, or to some chief factor of §/K, . Therefore, &/K,NK,€ §%, .

The theorem is proved.

It follows from Theorem 21.8 and assertion 21.1.1 of [5] that if the § -coradical of a group & is « (§)-
solvable, then an § -projector of & covers each § -central chief factor of & .

LEMMA 1.1. Suppose Z is aformation, § is a subformation, and the § -coradical of each group in &
is @(§) -solvable. If ¢ is an arbitrary local £ -screen, # is a maximal inner local screen of § , and
/(p)= ?Zp;ﬂ,(p)n & for each prime P sthen ¢ is alocal £ -screen of 5.

Proof. It is easy to see that § S <¢> . Let us prove the reverse inclusion. Assume it is false. Choose
inthe class <¢>~ §& agroup & of smallest order. Then & has a unique minimal normal subgroup X ,
which coincides with &% . I A is non-Abelian, then CG (K) = 7/ . Consequently, £ € ¢(K) S & and there-
fore its order is not divisible by numbers in 7 ( §) . But then £(X)=¢ , which implies @(K)=#. Con-
tradiction. It remains to assume that X is an Abelian P =group for some pe #(§) . Then it is easy to see
that 5'/62:'(/() € (p)N §SF(p) . Consequently, £€ § , whichis impossible.

The lemma is proved.

LEMMA 1.2. Suppose each group in % has a 7% (S) -solvable § -coradical, where § is a forma-
tion with maximal inner local screen /£ . If 7{* is the local screen such that /'*(p)= f*z f(,o) for each
prime p£ , then:

1) 7['* is a complete local screen of § ;

2) if @ is either an inner or an § -closed local screen of § , then ¥s -

Proof Suppose G is a group in 7 /‘*(p), where Y4 is a prime, and Fisan § ~projector of G.
Then F/ﬂ (F) ~F0 ¢V o (G}e/(p) . Since, by Theorem 3.3 of [5], the screen 7 is complete, it follows
that F € /7 (P) . Consequently, & 67[ (p), and /’ is a complete local screen. That it is a screen of §
now follows directly from Lemma 1.1.

Assertion 2) in the case where ¢ is an inner local screen of § is trivial. Suppose @ is an § -closed
local screen of & . Suppose also that G € ¢ (p) , where P is a prime, and # is an § -projector of & .
Then 7€ ¢(p) N § and, by Theorem 3.3 of [5], F€/(0) . Consequently, €/ *(p) .

The lemma is proved.

LEMMA 1.3. Suppose each group of Z¥ has a %(§) -solvable & -coradical, where § is a formation
with maximal inner local screen f . Let £ ® be the local screen such that 7 *(,o)= §#, f(p for each
prime p , and let # be an § -projector of & . Then:

1) F covers each f M —céntral chief factor of & ;

2) each chief factor of & covering the subgroup F is f * -central.

Proof. Let us prove the first assertion. Suppose G isa counterexample of least order and K is a
minimal normal subgroup of & . It is easy to show by induction that # covers each /' * —central chief factor

*
of & lying above K . Therefore, to prove 1) it suffices to show that 7~ covers A if K is £ -centralin & .
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Obviously, §# $#7/ . Assume that K is not contained in £¥ . Then K@s/&’sa’ K ,hence K is § -
central in ¢ . Therefore, F covers K , which is impossible. Suppose K is containedin & . Since (&*
is @ (&) -solvable, it follows that |K] either is not divisible by the numbers.in %(§) or is a power of a prime
P in#z(§). Inthe first case, by Lemma 1.2, f (k) = ¢, which is impossible, There remains the second
case: K is a P -group, 7€ (§) . Then, obviously, FK/Q-K (K)=F/C.(K)€ £(p), Consequently, F covers
each 7K ~chief factor of K , hence £ covers K . Contradiction,

Let us prove the second assertion of the lemma. Suppose G isa group of least order for which asser-
tion 2) does not hold. Let X be a minimal normal subgroup of & . It is easy to see that to prove 2) it suffices
to show that K is 7 -centralin & if F covers K . By Lemma 1.2, & $# 1 . If K is not contained in
&% ,then K is § -centralin & and, by Lemma 1.2, v *-central in & , which is impossible, Therefore,
K is a p -group for some prime p in z( §) . By Theorem 3.3 of [5], fisa complete local screen,
hence F/Uk: (F)e £(p) , and therefore FG (K)/ Oy (K) ~F/C_(K)ef(p). Consequently, F/CL. (K) e £ (p).

The lemma is proved.

THEOREM 1.3. If each group in # has a %(§) -solvable § -coradical, where § is a formation
with maximal inner local screen / , then § o § is the formation of all groups in which an & -projector
covers only the § -central chief factors,

The proof follows directly from Theorem 1.2 and Lemma 1.3.

Note that in the case where %=9" the formation s * § was studied by Doerk [13] and by Beidleman
and Makan [21].

LEMMA 1.4. Suppose G isa group and K;,Kz are arbitrary normal subgroups of & . Then:

1) 1f F isan § -projector of & ,then FK NFK,= F(K,NK,);

2) if # isan § -normalizer of £ and 6% is #(§) -solvable, then HK,NHK=H (K, N K,),

1_°£_o_of_. The first assertion of the lemma follows from Theorem 2.1 and Lemma 2,5 of [22}. Let us prove
the second. Obviously, # (K,NK,) S HK, N HK,. Let us prove the reverse inclusion. Assume it is false.
Suppose & is a counterexample of least order, If either K ,NK, #+ 1 or one of the subgroups X,,A, is1,
then, obviously, #K,NHK, = #(K,N K,) . Therefore, K,NK, =/ and K,+/ , K,#/, Let N be a minimal
normal subgroup of & contained in A, , Then, by induction, #K,NHNK, = HK,. Consequently, HK,N HK,=
HN. N HK, , hence ./ =K, Analogously, it is easy to see that K, is a minimal normal subgroup of &.

In view of assertion 21.11 of [5], it follows that K, K , are § -eccentric chief factors of £ . Since K, X, -
/K, is an § -eccentric chief factor of &, it follows easily from Theorem 21,1 of [5] that 4N K, Ky=1.
Supbose T is an arbitrary element of the group #A;N#K,. Then =44, = /f, é’z, where 4,, /4, EH, {15 K,
£ eX,, Consequently, 4, #,= £, {7 is an element of #NK,K, =7, Therefore, Z€/ . Thus, #K, NHK, S H,
which is impossible,

The lemma is proved.

THEOREM 1.4. X¥eachgroupin Z hasa ’/T(.S:,;) -solvable 9&' -coradical, where §,; is a local
formation ({=42) ,then §, %, §, is a formation.

The proof of the theorem is obtained by using Lemma 1.4.

From Theorem 1.4 and Theorem 21,8 of [5] we have
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COROLLARY 1.4.1. I eachgroup in %/ has a & (&) -solvable § -coradical, where & is a local

formation, then § *y § coincides with the class of all groups in which an ¢ -projector coincides with an § -
normalizer.

Note that the formation §%, § inthe case where ¥ =7° and § 27 was studied in [13-15].

THEOREM 1.5. Suppose ¥, ﬁfy are local formations, If each group 2 has a @ ( %) ~-solvable ig;-
coradical, then &% % is a formation.

Proof. Suppose K is a normal subgroup of & . Obviously, fe§ *e % implies /K€ §%; 59 R
Assume that K, , K, are distinct minimal normal subgroups of & such that 0//(5 € §x, )9 , =h2. We
will prove that G € § *5 ? . Obviously, the é -projectors of & belong to /’ {p) for each prime L~ ., Sup-
pose H/K is an arbitrary chief factor of & lying above K, , and F is some 5% -projector of & . Since
[,3//(,e § %5 ‘f? , it is obvious that F either covers or avoids each chief factor of & lying above X, .

Also, G/K,eS%, % implies that FA,/K, either covers or avoids K,K, /K, . If FK,/K, avoids KK, /K,,
then it is easy to see that # NK, =/ ;hence / avoids K, . If FK,/K, covers K K, /K, ,then FK,2 KK, -
Therefore, by Theorem 2.1 of [22] K, K, = K, (FNK,). Consequently, FNK, = K, ,hence F covers K, .
Thus we have shown that # either covers or avoids each chief factor of & in a chief series passing through
A .

Suppose K /8 isan arbitrary chief factor of & and 4" is the local screen such that /l’(p)= i? *z'é(,a)
for each prime 2 . If R/S is an 4" —central chief factor, then, by Lemma 1.3, ~ covers A/S . Thus,
we may assume that K/S is an A* -eccentric chief factor of & . We consider two cases.

1. The subgroup K, covers K/S . Then, obviously, #/S=~K, . Therefore, by Lemma 1.3, F NK, = fo
By Theorem 2.1 of [22], FNRSFNK, §= FNS§ ,hence F avoids S .

2. The subgroup K, avoids R/S

In this case K/S ~ /(,R/K,S , hence it follows from Lemma 1.3 that 7 avoids K,R /K,S.

By Theorem 2.1 of [22], FNRE(FNK,)FNY) . Therefore, applying the same theorem again, we obtain
FAR=(FnS)(FnKNR)&§ . Consequently, F avoids X/§ . Thus, F is a SOM -subgroup of & .

The theorem is proved,

2., Maximal Screens of Local Formations

In [7] we announced the following theorem, in which are used formation products of the first kind.

THEOREM 2.1. Suppose & € # are certain formations, § is local, and each group in £ has a # ( §)-
solvable & -coradical. Then:

1) § has a unique maximal local & -screen f ;

2) if ¢ is a maximal inner local screen of § . then fipy = (5*,,¢(p))ﬂ Z for each prime o .

This theorem is discussed in detail in [5, p. 22}, hence we omit the proof here.

We mention only that Theorem 2.1 with %= % and F£=§ includes the results of Carter and Hawkes
[19] and Schmid [18], and with ZZ/=Z=7° and §22/ the result of Doerk [20].

Definition 2.1. Suppose § is a formation with local screen /' and # is some class of groups with a
Z(§) -solvable § -coradical. The screen / of the formation § is célled & -monotone if, for each
group £ €Z and § -projector £ of this group, F SACL €& always implies that K P e LFP for
all primes pez($) .
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THEOREM 2.2. Suppose § € £ are certain formations, & is local, £ is S ~closed, and each
groupin § has a @(S§) -solvable § -coradical. Then:

1) § has a unique maximal % -monotone local £ -screen | ;

2) if ¥ is a maximal inner local screen of § ,then f(m = (§ % ¢pENNE for any prime p .

M By Theorem 3.3 of [5], the formation § has a unique maximal inner local screen 90 . Let 7[
be the local screen such that f(p»= (5*2 ()N 2Z for any prime p (obviously, ($*,¢¥(PINZ isa
formation). We will prove that f' is an £ -monotone local screen, Suppose the group & belongs to £ and
F isan  -projector of & . Take subgroups K and Z of &, suchthat FEKCL € &, Let P2 bea
prime belonging to #(§). Obviously, ¢ <f . Therefore, fipr¢ & | Since F is an § -projector of K
belonging to Z , it follows that £ Y?’c KF%' . Assume that N is a normal subgroup of & such that
FYP'S N and NCK¥ | Thenthe § -projector FN/N of the group A/N belongs to ¢(p) , hence
K/Nef(py . Consequently, K (P is the smallest normal subgroup of K containing F #?' . Analogously,
L% is the smallest normal subgroups of [ containing £ g . Since [,’l' ¥ n K isnormal in K , it follows
tmat 7 7c 47

Lemma 1.1.

. Thus, / is an £ -monotone local £ -screen, Thus $=< /> , follows easily from

Suppose 7, is an arbitrary # -monotone local F -screen of § . Let ¢ be the inner screen of §
such that @Y= ﬂ(pm § for each prime # . Then p= ¢ . Assume that the group & belongs to 7‘; (»
where pe (§). Let F be an § -projector of & . Then F5® ¢ £%% hence Fey(p) . But then
Gefpy. Thus, #<F .

The theorem is proved.

COROLLARY 2.2.1. Suppose § € £ are certain formations, §& is local, £ is S -closed, and gach

group in £ has a nilpotent § -coradical, If ¢ is a maximal inner local screen of § , then the local screen
# such that Lipr= (£ % ¢(p)NZ for eachprime P is a maximal 7 -monotone local £ -screen of §,

The proof of this assertion follows directly from the previous theorem and Theorem 21.5 of [5].

3. Maximal Screens of Induced Local Formations

LEMMA 3.1. Suppose 7‘; ,7‘; are maximal inner local screens of the formations .F,, .Fz , respectively,
Then §, is a subformation of &, if and only if A=t .

We omit the proof of the lemma, since it is given in [5, p. 65].

It is easy to establish

LEMMA 3.2. If § is an arbitrary nonempty formation, then the local screen Il' such that / (pr= ﬂp 5
for each prime £ is a maximal inner local screen of the formation #Z & .

LEMMA 3.3. Suppose all minimal normal subgroups of a group § are solvable. If £ has at most two
minimal normal subgroups and ( ' (£)=1 for some prime P »then G has a faithful irreducible representa-
tion over a finite field of characteristic - .

Proof, If [ is simple, the lemma is trivial. Suppose M is the product of all minimal normal sub-
groups of & . Obviously, M=<m>x K , where K =/ and n=|<m>| is either a prime or the product of
two distinet primes, and (7,2)=7 . Consequently, in some finite field of characteristic o there exists a prim-
itive 72 .~th root of unitys & . Consider the mapping (p:m“;{ — » Where k’ ekK . Obviously, P is a

one-dimensional representation of / with kernel K, Let «ps be the representation of G induced by the
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representation ¢ of # . Look at the irreducible constituent (7 (y)) in the upper left corner of the matrix
(906(‘9)) » where g€ £ . It is easy to see that KerZ M= /(63 =/, Therefore,.‘ Ktt=/ and T is the de-
sired representation of k.

The lemma is proved.

THEOREM 3.1. Suppose #=7" and 8:;-&9 are certain formations. The local screen 74) such that

f’(,o) = %P (§ *, ‘9 ) for each prime o is a maximal inner local screen of the formation H’o’tm ( § * ‘@) .
Proof. Suppose 7" is a maximal inner local screen of the formation (/:-FO'tm (&%, ‘fg) . Since
§%% Sk (§+%9) , it follows that Lom (& =, %) ST (S % %) . Therefore, by Lemmas 3.1 and 3.2,
fipr = ?ZP( §x %) . Let us prove the reverse inclusion. Assume it is false. Choose in the class
’)ZP ( & ?)\ 7" {p) agroup & of least order., Then (+ has a unique minimal normal subgroup K , which
coincides with (.2'0 G }. Obviously, UP(G) =/ , Therefore, by Lemma 3.3, G is an irreducible group of
automorphisms of some p -group N . Let =N > be the extension of & by N . It is easy to see that
& does not belong to & . Then & is a maximal § -abnormal subgroup of /- . Therefore, by Lemma 13.3,
of [5], & is & =-critical in /~, Consequently, an § -normalizer # of ( is an § -normalizer of /.
It follows that /€ § ¥ 9 < mem (§# Y?). Therefore, £~/ /NeA(p) . Contradiction.
The theorem is proved.
THEOREM 3.2. Suppose each group in % has a %(§) -solvable §& -coradical, where & is a forma-
tion with maximal inner local screen ¢ . Suppose 9 is a formation such that %p%‘ g;g.? *, Y(p) for all

primes p €% (§) . Then the local screen /' such that

_ g, w9 =dg,
Fip) { 7y(5%, %) i it I

for each prime £ is a maximal inner local screen of the formation f{'o'zm (§ *23@) .

Proof. By Theorem 3.3 of [5], Z{'O'Lm (§ x, i’?) has a unique maximal inner local screen f . ¢= ¢,
then § “s f? = ;é and therefore (ftnm( § *2509\’ = ‘g » where ‘g is a formation of identity groups. Con-
sequently, #(® ~ & for all primes P

If ﬂ;» # ¢ , then, in view of Lemmas 3.1 and 3.2, £(P) S ?Zp(g*z 5%) for all primes £ . Suppose & is
a group of least order in the class #,(5+, ﬁ% )NFf() and F is an § -projector of & . Consider the reg-
ular wreath product, /=2~ 16 , where [D| ~p . Then /"=N*{ , where N is an elementary Abelian
P -group. Obviously, /V=€D(/") . I ¢(p)=¢ ,then F isan § -projector of FN , hence an § -projec-
tor of /7 . Consequently, /€ & *, 4 < torm (S, %) and G=~T/F () € £(p) . Contradiction, Sup-
pose (/(p)#¢# . Then it follows from Theorem 15.7 of [5] and Lemma 2 of [23] that F# isan § -projec-
tor of /7. Since FNE€7L, % =1 , it follows that /€§*,% . Therefore, G f/FP Tef(p) .
Contradiction.

The theorem is proved.

LEMMA 3.4. Suppose S:, , 5:2 are formations with maximal inner local screens f',, 72 . Then the

local group function ¢ such that

Plp) = ((ZZ\ (57*2/;(/7))0(?1 *3 gz ))Uﬁ (P
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for each prime £ is a local group function of the formation -f, * fz .

Proof, We will show that <¢>= 3:, * gz for the group function ¢ indicated in the lemma.

Suppose & is a group of least order in the class ( §,*3 52)* <¢> , Then & has a uniqué minimal nor-
mal subgroup K , which coincides with §<w> . Obviously, K is f',* ~eccentric, where ﬁ* is the local

group function such that 7‘;*(/’ =54 ‘p) for each prime p . But then,
%
B/C, (K< (Wf] ) (§,%,5,) € ¢(p).

Consequently, £€<¢> . Contradiction.

It remains to show that §, #, 5,2 <¢> | This follows by induction, inasmuch as b 40= nf, ,*(,D}S/z(p)
for each prime p .

The lemma is proved.

LEMMA 3.5. Suppose each group in 2 has a solvable f,' (,D) -coradical for all primes pea (&) ,
where S:, is a formation with maximal inner local screen 7; . Suppose fz' is a formation with maximal
inner local screen £, . I § S §,and f isamaximalimerlocal screenof the formation Efoum (&, %, ¢,)
then:

1y sf , where ¢ is the local group function of the formation 5, * § 2 such that

plp)= (U~ (S%F ) (§x, $)uf, (o)
for each prime p
2) f= ¢ , where ¢ is the local screen such that ¢/(p)= ?ZF form ¥(p) for each prime p and ¢ is
the group function in 1),
Proof, Suppose 7[,*' is the local screen such that /:(P)= g,*zﬂ () for edch prime p and ¢ is the
local group function such that

¢ (P = ({zl \{:(P))ﬂ (fl*afz»ujglﬁ)

for each prime p . Then, by Lemma 3.4, ¢ is an inner local group function of the formation §,%, §, .

Let us prove the first assertion of the lemma. Assume it is false. Then there exists a prime £ such
that @(p) is not contained in #(p) , where £ is a maximal inner screen of the formation tfoum (£,% 5, ).
Choose in the class p(p)~F(p) agroup G of least order.

I 4@ =0 ,then pp)= 5 *, §, . Obviously, 0,(&)=/ . Consider theregular wreath product
I’=PvE , where |P|=p . Then /"= NrG , where N is an elementary Abelian p -group., Obviously,
N= 0/,(/")=%;,(}") . Since /’/0/,(/’) € ¢(p) , it follows that /7€ !fam(f,*3 §,) . Thus, & ai‘//fp (r)
€ /’ (p>. Contradiction.

Assume that 7‘,‘(/7)74 g . I CE/,*(,D) , then GEP(p)n{’;(P)(;fz(p) . But Fzgffazm(§,*3 §) .
Therefore, by Lemma 3.1, 7[2)(,0)97[) (P) . Consequently, £€#(p) . Contradiction. Thus, we may assume
that & does not belong to £7 (P

If has two distinct minimal normal subgroups K, and K, such that G/ K(; €EP(p) » (=42 ,
then /K€ fip and therefore & €f(p), which is impossible. If £ /K; does not belong to ¢(p), (=42 ,
then G/K; 67‘;*(/3) . Consequently, 5 € £, ,* (p) . Contradiction.
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Assume that 4 has at most two minimal normal subgroups. If & has exactly two distinct minimal
normal subgroups K, and Kz » where G/K,eqp(,o) and 5//(2 does not belong to ¢(p) , then G//(, e/,’ {p)
and £/K g E/’ ,*(,0) . Obviously, A, and K, are subgroups of the 74(,0) ~coradical of & . Consequently,
K, and /(2 are solvable and UP( £)=1, Therefore, by ILemma 3.3, & -is an irreducible group of auto-
morphisms of some o -group N . Let /=N A §& be the extension of & by N . Since / /N =~ F€§, * 5,
and ¥ is ¢ -centralin /7, it follows from Lemma 3.4 that /" € §;% § . Therefore, C=TINE€Fip),
Contradiction.

The case where & has a unique minimal normal subgroup is handled analogously.

Let us prove the second assertion of the lemma., Let 5&, be the local screen such that t/, (pr=
f’o'zm vip) for each prime £ . Since, according to 1), we have ¢ sf’ , it follows that % s/’ . Obvi-
ously, <¢>=<¢,> . Consequently, <¢>_Cf7fmm(5, *, fz) . On the other hand, it follows from the definition
of Lfoxm (§ %, F,) that Cfoum (£, % §,)E<¢> . Assertion 2) is hpw obvious, in view of Theorem 3.3
of [5].

The lemma is proved.

THEOREM 3.3. Suppose ?, < ?2 are local formations and 7E777[72 are maximal inner local screens
of S‘, » &, , respectively. If each group in % has a solvable 75,(,0) -coradical for all primes p €z (%),
then the local screen 7” such that

iy = { Aipr it Fup=$,,
& 7,(8,% §,) L i L pAS

for each prime p is a maximal inner local screen of the formation {fo'zm, (¥, *, ?2) .

Proof. Let §= §,%, &, and §= {foum (E,*3 §,). By Lemma 3.5, ¥ possesses a unique maximal inner
local screen f' such that /(p)= 7Z"7 foum #(p) for each prime p , where 90(/0)=((w\(§/*27['7 NN 5‘)U/'Z(P’ for
each prime p . Therefore, to prove the theorem it suffices to clarify the structure of fo'zm ¢ (p) for all
primes £ .

Suppose /,’ (p) = 5, ,» where £ is aprime. Then ¢(p)=#, (p) , hence )po'un Pip) = f; (p) . Since 7ﬁ
is a complete screen, 7 p*Ss, .

Assume that /J(,D)=;g (p) ywhere £ is aprime. If. ;{ ga)=¢’ » then ¢(p) = §" , hence /(,o) =7ZP§* .

Suppose 7 (P)#% & . We will prove that §% ]Pmm ¢(p). Obviously, fU‘Lm Plp)y < §F. Let us prove
the reverse inclusion. Suppose X is an arbitrary group in §* . Choose in the class 5, \f; {p) agroup &
of least order. Then & has a unique minimal normal subgroup K , which coincides with 576"60 > . Ob-
viously, K is solvable and UP(G) = {, Therefore, by ILemma 3.3, G is an irreducible group of automorphisms
of some p -group N. Let ™=N»& ., Since [/N~Ge ¥ (p) , we have /€ §%, by virtue of Lemma 3.4.
It is easy to see that /"€ ¢(p), Let //= 72X . Obviously, /e p(p) = fmm @(o . Therefore, Xefoum ¢(p)
and §'= foum p(p> . It follows that {(p)= x, §*

The theorem is proved.

LEMMA 3.6. If -§ is anonempty formation, % is some set of primes, and (Gen ) § = § , then the

local screen 7(' such that



§ . i per,
fipr = { GAWF . u pea
for each prime o is a maximal inner local screen of the formation (¢, N %) § .

Proof, We will prove that (¢, N U)§ =<f>. Obviously, @z nW)§ = <f> . Letus prove that
<f><(f, NS . Assume thisis not so. Let & be agroup of least order in the class <f>~ (l%,,f‘ AN
Then £ possesses a unique minimal normal subgroup X . Suppose Ugz (6/K)=L/K . Then & /Le§
and L/K€llg N . We will assume that / is a subgroup of least order such that &/L€§ and 4/K€
[ SRLY/ '

If K is non-Abelian, then FG (K)=1 and therefore &€ (%‘., N%)§, which is impossible, Suppose K
is Abelian. If K€ff,, MU ,then L€ (g N and therefore L€ (g N 8) § . Contradiction. If K€ g, N U,
then @/5’5 (K)e § . Consequently, 6’/[; (K)N L€ § and LQ% (K) , in view of the minimality of Z . By
the Schur—Zassenhaus theorem, A has a complement A/ in Z ., It is easy to see that N is a normal 7’ -Hall
subgroup of / . But then A is a normal subgroup of & . Consequently, A=/ , hence (¢ (qﬁﬂ W E=§=
(@4 U § . Contradiction, The lemma now follows from Theorem 3,3 of [5], |

The lemma is proved.

THEOREM 3.4. Suppose f,‘ = S:z are local formations and 7[',, f; are maximal inner local screens

of § . §, ,respectively. It % is the set of all # (§,)-solvable groups in & , then the local screen f
such that

N /’z(,o), if ﬁ(p)=§ ,
fior = {72/,(9,*4 §,) i F#S,

for each prime p is a maximal inner local screen of the formation {foem ( 5 *, 5,).

Proof, Let F= (ffmm 5" , where §"= 5:7"*_,,-§2 . By Theorem 3.3 of [5], the formation ¥ has a unique
maxihlél ihner local screen 7[) .

Suppose 7, (p) = §, , where p is aprime. We will prove that //m=% (2 . Obviously, §,& §
Therefore, by Lemma 3,1, 7”2 sf, » hence )z:(,o) < 7‘7(/0) . Suppose & is agroupin § * . Since % ()= &;
it follows from Lemma 1.3 that an 5:1 -projector of £ covers each chief factor of & whose order is divisible
by o . But then an S:Z -normalizer of & covers these same factors, Therefore, by Theorem 21.1.1 of [5],
each of them is &, -central, Therefore, & €(@,, N} £, (p) . Thus, §*c (G n ) £(P ,hence § &
(g1 W4, (p) . But then, by Lemmas 3.1 and 3.6, fipy e £ (o).

Assume that 7[;(/0)7é 5:, » where £ is a prime. We will prove that /(p)=%§* . Since §FE&70 f‘ s
it follows from Lemmas 3.1 and 3.2 that 7 (p) E?ZP §" . Let & bea group of least order in «?%,S"*‘ ,F.(p) .
Obviously, £e§° .

Suppose /;(,0)= & . Consider the regular wreath product /=214 , where |P|=p . Then /'=N»*{ ,
where A is an elementary Abelian £ -group. Obviously, /V=/L; (7). Suppose F is an S:, -projector of & .
Then, obviously, F is an §, -projector of AN , hence # isan §, -projector of I, since £e§™ ,it
follows that F S 4 , where # is some §, -normalizer of & . By Theorem 21.6 of [5], 4= 5”/'/* ,
where H* is some & -normalizer of /7. Therefore, /€ §* ¢ § , hence 5-"—’/"//‘;, (7)ef(p) . Con-

tradiction.

98



Assume that ﬂ (p)+# & . We will first prove that the class S:, S 7[,’ () contains a group X such that:

1) X has a unigue minimal normal subgroup whose order is a ,0' ~-number;

2) Z(X) is aproper subgroup of the 7 (p) -coradical of X .

Choose in the class §, ~f ) agroup Y of least order. Then Y has a unique minimal normal sub-
group K, which coincides with y# %’ Obviously, J,(Y)=/ . Suppose K isa ¢ -group for some prime
Z-,é,o and Ye;f,’(g) . Let { bea ¢ -complement of Y and M a Y -module over a field of g elements
induced by an irreducible trivial & -module over the same field, Then M is a principal indecomposable
module and its socle is an irreducible trivial Y -module over the field of ¢ elements. Obviously, M is a
faithful module. Let X=AM AY . Since the module / is faithful, Z(X)EA . But the socle of the module #
is the unique minimal normal subgroup of X . Therefore, Z(X)=AM and requirement 1) for X is satisfied.
Since X9 g not contained in M and Z{X) € XH e , it follows that Z(X) is a proper subgroup of xfre
and condition 2) for X is satisfied.

Let X*=XxG . Obviously, the subgroup F,=X*7 is an \S:I -projector of X* . Suppose F= F;ﬂ(p’n
X =1/ ., Then, by Lemma 1.1 of [14], F,”"”’g Z(X) xF . Consequently, X/Z(X)~X*/Z(X)xFef tp ,
which contradicts the fact that Z (X) 1is a proper subgroup of X il . Thus, we may assume that £ *7é/ .

By Lemma 3.3, X possesses a faithful irreducible X -module N over a field of P elements. There-
fore, since F e , we have é:v (F*)=/ . Suppose A is aregular & -module over the field of p elements,
Consider the tensor product ‘M= N@R with operator (4 ®7) (2.9)=nz @19 ,where TER ,1¢ M ozeX,
g€l . Let M¥| x be the restriction of the X" -module M* to X . Then M* >~ Ne ol &N . There-
fore, (\«(F")={ , Let 7"“= M"X(X*&), Then, by Theorem 15.7 of [5] and Lemma 2 of [24], £ isan § -
projector of the group £ M* , hence £ is an § -projector of 7F . Obviously, X e §, *, §,. There-
fore, 7, € /4, , where /7 is some §, -normalizer of X* . Butthen A=X*NH* for some 5, -normalizer
of /'* . Therefore, /"€ {form (&%, §,) . Itis easy tosee that A" contains an X' -submodule over the
field of o elements of ¥ isomorphic to the X* -module ¥ @ 7. , the kernel of which is & , and the restric-
tion M” ]@ of M to & is isomorphic to X®,.. @&~ . I follows that A is a faithful X * -module

Adimg
over ¥ . Therefore, Mf—-//fo(/'ﬁ and X o /"*/M*Gf'(p) . Thus, &=X"/X €£(p) . Contradiction.
The theorem is proved.
THEOREM 3.5. Suppose §, € &, are local formations. If eachgroupin 2/ hasa 7 (F,) -solvable
S:z -coradical, then the local screen 70 such that

{ g , it pea’(§),
o = ﬂp(.ﬁ*5$z) » if peR(S),

for each prime p is a maximal inner local screen of the formation {foum ( 5 * £,).

Proof, Suppose g is aprime. If pew’(§,) , then f,*sfz= 7 , hence Cfoum (£ %,5,)=¢ . Con-
sequently, A(py=¢@ , where # is a maximal inner local screen of {foym (& ¥ 5,).

Assume that p € (§,). Then, obviously, %’co)g??p(ﬁ * §,) . We will prove that 7, (5%8)ctp.
Choose in the class Z’Zp (5:, * 50N £(p) agroup & of least order. Obviously, OP (¢)={ and FE§ %S, .
Consider the regular wreath product /=2 , where [P =p . Then /=N AG , where N is an ele-

mentary Abelian p -group. Obviously, N=F;o (7). Suppose F isan §, -projector of /. Since § €5, ,
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it follows from Lemma 3.1 that / lp) c Fh® » where £, ,7, are maximal inner local screens of 5.5,
respectively. Consequently, by Theorem 15.7 of [5] and Lemma 2 of [24], F¥ is an § -projector of /7,
Since /7 isacomplete screen, FN € £ (p) . Moreover, //Nafe §, *. &, and FN covers A . There-
fore, it is easy to see that FAN is a DN -subgroup of 7, Thus, /7€ 5§, € ”oun(.?, *§,) . There-
fore, &=/ /Ea (T )£ . Contradiction,

The theorem is proved.

4. Criteria for Localness of Formation Products

THEOREM 4.1, Suppose =7 and §C 5@ are certain formations, where § is local. Then §*,5@
is local if and only if F*,Y} =7,

THEOREM 4.2, Suppose each group in /] has a solvable § -coradical, where § ‘is a formation with
maximal inner local screen ¢ . If % is a formation such that §< % = n,4% < 5% ¢(p forall p in z($)
then §%, % is local if and only if § ¥, ‘)@ =

THEOREM 4.3. Suppose =7 and § < §, are certain local formations, where §27 . Then
§ % §, islocalif and only if § % §,=7" .

The proofs of Theorems 4.1-4.3 are of the same type and follow easily from Theorems 3.1, 3.2, 3.5,
respectively, and Lemma 3.1,

THEOREM 4.4. Suppose 5:, = “Fz are formations and f; ,iz; are maximal inner local screens of
§,, &, respectively. If each group in 7§ has a solvable £ (p) -coradical for all primes p ina@(f) ,
then § =; §, is local if and only if 2,(5%5,) =§,*%, §, for all primes & such that 7 @ # 5, .

Proof. If §%; §, is local, then, by Theorem 3.3, %, (§, %, §,) = § #, §, for all primes o such that
/;(/0)% ¥ . Letus prove the converse. Suppose 7, (F,%#,§,)=5§,x, &, for all primes p such that
A+SE, . Choose in the class ﬂfﬂ'tm. (F%,8,)> (5, %, §,) agroup & of least order. Then & has a
unique minimal normal subgroup K . If K is non-Abelian, then (K) = { ,hence [ €f1p) , where p[|K]
and £ is a maximal inner local screen of Efoum ( f; 3 §2) . By Theorem 3.3, £'€ 5, ¥, ‘Fz , which is impossible,
Assume that K is an Abelian p -group, where p is a prime. If /,'(,D) + 5, then@g ﬂP(F,*s §,)=5,%; 5.
If 7[’7 (@ =%, then géf(p)=7‘; ps 5, *3 §, « Contradiction.

The theorem is proved.

THEOREM 4.5. Suppose there exist some set of primes 6 and a nonempty formation § such that
(G §=F . suppose § S § are formations and # +# are maximal inner local screens of
f, , 52 s respectively. If each group in 2} has a solvable 7"; (p) -coradical for each ,06'/7(5,) and if
either §,= G or §= (g NU)S ,then F,% §, is alocal formation.

Proof. If §=@, N% ,then & has a maximal inner local screen 7; such that

3 G , if pes’
e = { g . # peo

If §= (q o VW) § , then, by Lemma 3.6, the local screen # such that

-l Gun)§ , if peo’
A { °§ . if PEO,
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for each prime p is a maximal inner local screen of §, . It is obvious that in each of the indicated cases
f;cp) =& if /oeé' , and;[;(/o> =§%fp if pec . Let fform (5, %5 §, ) be the local formation gen-
erated by 5:7*3 Fz , and let £ be a maximal inner local screen of this local formation. Let & be a group of
least order in the class (fom (§%, )N (85, %, § ,) . Then & has a unique minimal normal subgroup X ,
which coincides with & (§,%, 5‘;) . Let 7[],* be the local screen such that 7",’F ()= §,% 7, (») for each prime
P I K is ]l;* -eccentric in £ , the theorem is obvious. Assume that K is 7[;‘ -central in & . Then,
by Lemma 3.1, G/CG (K)E;f,*(p)‘;;[z’ (7) for some prime p in 6 dividing |K| . By Lemma 3.4, £€ § %, §,
which is impossible, ¥ p<c , then 4 ip)=§, and, by Theorem 3.3, 0/5’& (K) € £(p) . Therefore, by
Lemma 3.4, &€ §*,§, . Contradiction.

The theorem is proved.

THEOREM 4.6. Suppose 57 c 5‘; are formations and /: ) 7’; are maximal inner local screens of
AR .Fz , respectively, Suppose Z/ coincides with the set of all 7 (§,) -solvable groups in q . Then
§ %, §, islocalif and onlyif #,(§, *,§,) = § %, §, for all primes p such that £ (o1 5 .

The proof of the theorem is ana}ogous to that of Theorem 4.4.

Following [13], we say that a local formation §, is strongly embedded in some local formation §, ,
and we write F, <= .Fz , if in any group A having a solvable .5:,; -coradical ({=7,2) an 51 -projector of &
is contained in some §, -projector of & .

THEOREM 4.7. Suppose F, , 5:2 are local formations and each group in 2% has a solvable FL -coradi-

cal (i=4,2) . If §,<<§, and § 2@ ,then 77 §, is the unique maximal (with respect to inclusion) local
subformation of §,%, §, .

mf_g Obviously, 77 52 is a local subformation of .F:*é, S:_,- . Suppose § is an arbitrary local forma-
tion contained in § %, 52 with maximal inner local screen f . In view of Lemmas 3.1 and 3.2, to prove the
theorem it suffices to show that / (,D)CW/, 32 for each prime »~ . Assume this is not so, Let G be a group
of least order in the class / P~ ?Z/, fz , where o is some prime. Then & has a unique minimal normal
subgroup K , which coincides with & % <2 . Since ?ZP §, 1is a saturated formation, A has a complement &
in & and /(=6; (K) . since M5 is solvable, it follows from Theorem 15.7 of [5] that # possesses an § ;-
projector F .. Obviously, OP(¢)= /. Suppose K isan g -group for some prime ¢#/ , Then, by Lemma 2
of [24], the subgroup F CI‘( (F £9) isan S‘; -projector of £ . We consider two cases,

1. Q(F£@U=£

Since MC§, o does not divide |G : M| , and M&= /| it follows from Lemma 2.2 of [13] that £
possesses a faithful irreducible G -module N over a field of ¢ elements such that the restriction N/ M
of the module M to A has a quotient module N/A, onwhich M acts identically. Let /=N »§ . Since
FeM and /V/ w  has a quotient module on which M acts identically, we have [F f’(P),N] cA . Sup-
pose F isan §, -projector of A& ., Then, by Lemma 2 of [24] and Theorem 21.10 of [5], F“nA#/ . Ob-
viously, F" isan §, -projector of /7. Since /€ §= &, ,itfollows that F*cH , where A is some 52 -
normalizer of /. By Theorem 21.1 of [5], 4 either covers N or avoids N . ¥ H convers N » then, by
Theorem 21.1 of [5], ¥ is §, -central /", hence GxT/Nef (e 7, §, , which is impossible. If # avoids
N, then F*NN={/ , which contradicts the fact that F*nN £ 1 .
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2. 0 (FF9) £,
Obviously, FCK (Fﬂ(g’) C H*, where 4 is some § -normalizer of b . By Theorem 21.1 of 5], 4"

2

either covers of avoids K . If 4" covers K , then, by Theorem 21.1 of [5], K is §, -centralin £ , hence

Fe7,§, . Contradiction. If H* avoids K , then O (F #%)=/ and the theorem is true by virtue of part 1.

The theorem is proved.

COROLLARY 4.7.1. Suppose each group in ¥ has a solvable S’;- -coradical, where 9,; is a local

formation (/=4,2) , §,<<§, and 512 2% . Then S*l S:z is local if and only if S’,ﬁ §, = 7ZSE2

In conclusion, the author would like to express his sincere gratitude to Professor L, A. Shemetkov, under
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