УДК 519.44

МАКСИМАЛЬНЫЕ ЭКРАНЫ ЛОКАЛЬНЫХ ФОРМАЦИЙ

н. т. воробьёв

В 1974 году Л.А.Шеметков [1] ввел понятие экрана и предложил классификацию экранов. Используя понятие экрана, он сформулировал общую задачу конструирования и исследования формаций следующим образом.

Если ${\cal F}$ - локальная формация, то задача состоит в том, чтобы описать те экраны f , для которых ${\cal F}= <\!\!f\!\!>$. Если же данная формация ${\cal F}$ не является локальной, то естественной является постановка аналогичного вопроса для наименьшей локальной формации ${\it \ellform}~{\cal F}$, содержащей данную.

Важную роль в решении такого рода вопросов играют максимальные локальные экраны формаций. Основная цель настоящей работы — исследова — ние формаций конечных групп при помощи максимальных локальных экранов.

В § 1 построено пять новых типов формаций при помощи двух форма-

[©] Институт математики, CO АН СССР, 1979

ций (формационные произведения i-го рода $\mathfrak{F}\star_i \mathfrak{H}$, $i\leqslant i\leqslant 5$). специальных случаях формационные произведения изучались ранее разными авторами. Так, в классе разрешимых групп Картер [26] , Хупперт [11] изучали классы $\mathcal{N}*_3\mathcal{N}$ и $\mathcal{N}*_4\mathcal{N}$, Дёрк [20] и Дарси [25] - классы $\mathbf{F}*_4\mathbf{F}$, $\mathbf{F}*_2\mathbf{F}$, Дёрк, Хоукс [14] и Дёрк [13–16] - классы $\mathbf{F}*_3\mathbf{F}$, и $\mathbf{F}*_4\mathbf{F}$ и $\mathbf{P}*_5\mathbf{F}$.

В § 2 формационные произведения используются для получения явного описания максимальных экранов локальных формаций. Заметим, что проблема нахождения максимальных экранов формаций в специальных случаях ставились Райтом [17] и П.Шмидом [18] и в общем виде – Л.А.Шеметковым [5, 6] .

В § 3 описаны максимальные экраны локальных формаций, порожденных формационными произведениями, 🖇 4 посвящен признакам локальности формационных произведений.

На протяжении всей статьи иы будем проводить все исследования в некотором непустом классе конечных групп \mathscr{U} , замкнутом относительно операций S , $\mathcal Q$ и $\mathsf Ext_{\mathscr H}$. Поэтому под группой мы всегда будем подразумевать только группу из ${\mathcal U}$, все рассматриваемые классы групп, в частности, значения экранов на неединичных группах являются подклас сами класса 🎢 .

Локальный экран f назовем:

- 1) полным, если $\mathcal{N}_{\rho}f(\rho)=f(\rho)$ для каждого простого ρ , 2) S -замкнутым, если формация $f(\rho)$ S -замкнута для каждого простого ho .

Подгруппу $\mathcal H$ группы $\mathcal G$ называют $\mathcal D\mathcal M$ -подгруппой [23] , если ${\mathcal H}$ либо покрывает, либо изолирует каждый главный фактор группы ${\mathcal G}$.

Все другие используемые определения и обозначения можно найти в монографии Л.А.Шеметкова [5].

Основные результаты статьи опубликованы без доказательства в [7-

§ 1. Формационные произведения

В этом параграфе мы введей и изучим классы $\mathcal{F}\star_{i}\not\!\!\!\!/_{3}$ $(1\leqslant i\leqslant 5)$, которые будем называть формационными произведениями 🕹-го рода.

ОПРЕДЕЛЕНИЕ 1.1. Пусть 🖇 - локальная формация, 💃 - произволь-

лизаторы которых принадлежат \mathcal{G} , а через $\mathcal{F} *_2 \mathcal{G}$ - класс всех групп, \mathcal{F} -проекторы которых принадлежат \mathcal{G} .

Если $g = \emptyset$, то положим $S * : g = \emptyset$, i = 1, 2.

ТЕОРЕМА 1.1. Пусть S - локальная форма - ция, \mathcal{H} - формация. Если S - корадикал каждой группы из \mathcal{H} $\pi(S)$ - разрешим, то класс S *; \mathcal{H} (i=1,2) - формация.

ДОКАЗАТЕЛЬСТВО теоремы легко установить проверкой, используя тот факт, что по теоремам 15.7 и 21.4 из [5] все ${\cal F}$ -проекторы и ${\cal F}$ -нор-мализаторы групп с ${\mathscr T}({\cal F})$ -разрешимым ${\cal F}$ -корадикалом сопряжены.

ОПРЕДЕЛЕНИЕ 1.2. Пусть \mathcal{F} , \mathcal{H} - локальные формации с макси - мальными внутренними локальными экранами f , \hbar соответственно. Пост - роим классы $\mathcal{F} = \mathcal{H}$ (i=3,4,5) следующим образом:

- 1) $G \in S_3$ тогда и только тогда, когда каждый f -цент ральный главный фактор G является f -центральным, где f такая локальная функция, что f (p) = $S*_2 f(p)$ для каждого простого p;
 - 2) $G \in S *_4 *_6$ тогда и только тогда, когда S -проектор группы G содержится в некотором $*_6$ -нормализаторе группы G ;
- 3) $G \in S$ G тогда и только тогда, когда G –проектор группы G является \mathcal{DM} –подгруппой в G и принадлежит $f(\rho)$ для каждого простого ρ .

дого простого ρ . Если $f(\rho) = \phi$ для некоторого простого ρ , то $\mathcal{F} *_{\mathcal{F}} *_{\mathcal{F}} = \phi$. ТЕОРЕМА 1.2. Формационное произведение третьего рода - формация.

ДОКАЗАТЕЛЬСТВО. Пусть S и K_1 – локальные формации, S $*_3$ $*_3$ — формационное произведение 3-го рода. Пусть $K_i extstyle G$, i=1,2 . Очевидно, что G extstyle S $*_3$ $*_4$ влечет $G/K_i extstyle S$ $*_3$ $*_5$. Предположим, что $G/K_i extstyle S$ $*_3$ $*_5$. Легко видеть, что каждый главный фактор группы $G/K_1 \cap K_2$ G –изоморфен либо некоторому главному фактору группы G/K_2 . Таким образом, имеем $G/K_1 \cap K_2 \in S$ $*_3$ $*_4$.

Теорема доказана.

Из теоремы 21.8 и утверждения 21.1.1 монографии [5] вытекает, что если в группе ${\cal G}$ — ${\cal F}$ -корадикал ${\cal \pi}$ (${\cal F}$) -разрешим, то ${\cal F}$ -проектор группы ${\cal G}$ покрывает каждый ${\cal F}$ -центральный главный фактор группы ${\cal G}$.

ЛЕММА 1.1. Пусть ${\mathcal Z}$ — формация, ${\mathcal S}$ — ее подформация и ${\mathcal S}$ — корадикал каждой груп — пы из \pmb{x} $\pmb{\pi}(\pmb{s})$ -разрешим. Если $\pmb{\varphi}$ -произвольный локальный \pmb{x} -экран, \pmb{f} - макси - мальный внутренний локальный экран формации \pmb{S} , причем $\pmb{f}(\pmb{\rho}) = \pmb{\mathcal{H}}_{\pmb{\rho}} \pmb{\varphi}(\pmb{\rho}) \cap \pmb{S}$ для каждого простого $\pmb{\rho}$, то $\pmb{\varphi}$ - локальный \pmb{x} -экран формации \pmb{S} .

ДОКАЗАТЕЛЬСТВО. Легко видеть, что $\mathcal{F} \subseteq \langle \varphi \rangle$. Докажем обратное включение. Предположим, что оно неверно. Выберем в классе $\langle \varphi \rangle \sim \mathcal{F}$ группу \mathcal{G} , имеющую наименьший порядок. Тогда \mathcal{G} имеет единственную минимальную нормальную подгруппу \mathcal{K} , совпадающую с $\mathcal{G}^{\mathfrak{F}}$. Если \mathcal{K} неабелева, то $\mathcal{C}_{\mathcal{G}}(\mathcal{K}) = \mathcal{I}$. Следовательно, $\mathcal{G} \in \mathcal{G}(\mathcal{K}) \subseteq \mathcal{X}$ и поэтому не делится на числа из $\pi(\mathcal{F})$. Но тогда $f(\mathcal{K}) = \emptyset$, что влечет $\mathcal{G}(\mathcal{K}) = \emptyset$. Получили противоречие. Остается принять, что \mathcal{K} абелева \mathcal{F} -группа для некоторого $\mathcal{F} \in \mathcal{F}(\mathcal{F})$. Нетрудно заметить, что тогда $\mathcal{G}/\mathcal{C}_{\mathcal{G}}(\mathcal{K}) \in \mathcal{F}(\mathcal{F})$. Следовательно, $\mathcal{F} \in \mathcal{F}$, что невозможно.

Лемма доказана.

ЛЕММА 1.2. Пусть каждая группа из \mathcal{U} имеет $\pi(\mathbf{F})$ - разрешимый \mathbf{F} - корадикал, где \mathbf{F} - формация с максимальным внутренним локальным экраном \mathbf{f} . Если \mathbf{f}^* - такой локальный экран, что $\mathbf{f}^*(\mathbf{p}) = \mathbf{F} *_{\mathbf{Z}} \mathbf{f}(\mathbf{p})$ для каждого простого \mathbf{p} , то справед - ливы следующие утверждения:

- · 1) ƒ *- полный локальный экран формации 5 ;
- 2) если arphi есть либо внутренний, либо S-замкнутый локальный экран формации S, то $arphi \leqslant f^*$.

ДОКАЗАТЕЛЬСТВО. Пусть G - группа из $\mathcal{H}_{p}f^{*}(p)$, где p - простое, и F - S -проектор группы G . Тогда $F/O_{p}(F) \simeq FO_{p}(G)/O_{p}(G) \in f(p)$. Так как, ввиду теоремы 3.3 из [5] , экран f - полный, то $F \in f(p)$. Следовательно, $G \in f^{*}(p)$, и f^{*} - полный локальный экран. То, что он - экран формации S , вытекает теперь непосредственно из леммы 1.1.

Утверждение 2) в случае, когда φ - внутренний локальный экран формации S , тривиально. Пусть φ - S замкнутый локальный экран формации S . Пусть $G \in \varphi(\rho)$, где ρ - простое и F - S -про -

ектор группы G . Тогда $F \in \varphi(\rho) \cap S$, и, по теореме 3.3 моногра - фии [5] , получаем, что $F \in f(\rho)$. Следовательно, $G \in f^*(\rho)$. Лемма доказана.

ЛЕММА 1.3. Пусть каждая группа из \mathcal{U} имеет $\pi(\mathcal{F})$ - разрешимый \mathcal{F} - корадикал, где \mathcal{F} - формация с максимальным внутренним локальным экраном f . Пусть f - такой локальный экран, что $f(\rho) = \mathcal{F} *_2 f(\rho)$ для каждого простого ρ . И пусть \mathcal{F} - \mathcal{F} - проектор группы \mathcal{G} . Тогда справед - ливы следующие утверждения:

- 1) $ar{\mathcal{F}}$ покрывает каждый $f^{ar{*}}$ -центральный главный фактор группы \mathcal{G} ;
- 2) каждый главный фактор группы $\cal G$, покрываемый подгруппой $\cal F$; является f^* -центральным.

Докажем второс утверждение леммы. Пусть G - группа наименьшего порядка, для которой утверждение 2) не выполняется. Пусть K - минимальная нормальная погруппа группы G . Легко видеть, что для доказательства 2) достаточно показать, что K f -центральна в G , если F покрывает G . В силу леммы 1.2, G G G G . В силу леммы 1.2, G G G G и, по лемме 1.2,

Лемма доказана.

f*-центральна в G-, что невозможно. Поэтому K является ρ -группой для некоторого простого ρ из π (G). Так как, по теореме 3.3 монографии [5], f- полный локальный экран, то F/\mathcal{O}_{ρ} , (F) \in $f(\rho)$, и поэтому $F\mathcal{O}_{G}(K)/\mathcal{O}_{G}(K) \simeq F/\mathcal{O}_{F}(K)$ \in $f(\rho)$. Следовательно, $G/\mathcal{O}_{G}(K) \in f^{*}(\rho)$.

ТЕОРЕМА 1.3. Если каждая группа из \mathcal{U} имеет $\mathcal{R}(S)$ -разрешимый S-корадикал, где S-формация с максимальным внутренним локальным экраном f, то S*3 S-формация всех групп, в которых S-проектор покрывает только S-централь - ные главные факторы.

ДОКАЗАТЕЛЬСТВО вытекает непосредственно из теоремы 1.2 и леммы 1.3.

Заметим, что в случае, когда $\mathcal{U}=\mathcal{V}$, формация \mathbf{F}_3 \mathbf{F} изучалась К.Дёрком в [13] , Бейдлеманом и Маканом в [21] .

ЛЕММА 1.4. Пусть G-группа, $K_{\bullet}K_{\bullet}$ - произ - вольные нормальные подгруппы из G . Справедливы следующие утверждения:

1) если F - S - проектор группы G , то $FK_1 \cap FK_2 = F(K_1 \cap K_2);$

2) если \mathcal{H} - \mathfrak{F} - нормализатор группы G и $G^{\mathfrak{F}}$ $\pi(\mathfrak{F})$ - разрешим, то $\mathcal{H}K_1\cap\mathcal{H}K_2=\mathcal{H}(K_1\cap K_2)$.

ДОКАЗАТЕЛЬСТВО. Первое утвержде ние леммы вытекает из теоремы 2.1 и леммы 2.5 работы [22]. Докажем второе утверждение. Очевидно, что $H(K_1\cap K_2)\subseteq HK_1\cap HK_2$. Докажем обратное включение. Предположим. что оно неверно. Пусть G - контрпример минимального порядка. Если либо $K_1\cap K_2\neq 1$, либо одна из подгрупп K_1,K_2 есть 1, то, очевидно, $HK_1\cap HK_2=H(K_1\cap K_2)$. Следовательно, $K_1\cap K_2=1$, причем $K_1\neq 1$, $K_2\neq 1$. Пусть N - минимальная нормальная подгруппа группы G, содержащаяся в K_1 . Тогда, применяя индукцию, имеем равенство $HK_1\cap HNK_2=HK_2$. Следовательно, $HK_1\cap HK_2=HN\cap HK_2$, и поэтому $N=K_1$. Аналогично легко видеть, что и K_2 - минимальная нормальная подгруппа группы G. Ввиду утверждения 21.11 из [5], получаем, что K_1 , K_2 - F -эксцентральные главные факторы

группы G . Так как K, K_2/K , — S —эксцентральный главный фактор группы G , то, применяя теорему 21.1 из [5] , легко видеть, что $H\cap K_1K_2=I$. Пусть \mathcal{X} — произвольный элемент группы $HK_1\cap HK_2$. Тогда $\mathcal{X}=h_1k_1=h_2k_2$, где $h_1,h_2\in H$, $k_1\in K_1$, $k_2\in K_2$. Следовательно, $h_2h_1=k_2k_2$ — элемент из $H\cap K_1K_2=I$. Отсюда вытекает, что $\mathcal{X}\in H$. Таким образом, $HK_1\cap HK_2\subseteq H$, что невозможчо.

Лемма доказана.

ТЕОРЕМА 1.4. Если каждая группа из $\mathcal U$ имеет $\pi(\mathcal S_i)$ - разрешимый $\mathcal S_i$ - корадикал. причем $\mathcal S_i$ - локальная формация(i=1,2) , то $\mathcal S_i*_4\mathcal S_2$ - формация.

Доказательство теоремы осуществляется проверкой с использованием леммы 1.4.

Из теоремы 1.4 и теоремы 21.8 монографии [5] вытекает СЛЕДСТВИЕ 1.4.1. Если каждая группа из $\mathcal M$ имеет $\pi(\mathcal F)$ – разрешимый $\mathcal F$ – корадикал, где $\mathcal F$ – локальная формация, то $\mathcal F*_{\boldsymbol 4}\mathcal F$ сов – падает с классом всех групп, в кото – рых $\mathcal F$ – проектор совпадает с $\mathcal F$ – норма – лизатором.

Заметим, что изучению формации $\mathcal{S} \star_{\mu} \mathcal{S}^{-}$ в случае, когда $\mathcal{U} = \mathcal{T}^{-}$ и $\mathcal{S} \supseteq \mathcal{U}$, были посвящены работы [13-15] .

ТЕОРЕМА 1.5. Пусть S, G – локальные формации. Если каждая группа из W имеет $\pi(G)$ – разрешимый G – корадикал, то $F*_{5}G$ – формация.

ДОКАЗАТЕЛЬСТВО. Пусть K - нормальная подгруппа группы G . Очевидно, что $G \in S *_5 \mathscr{L}_3$ влечет $G/K \in S *_5 \mathscr{L}_3$. Предположим, что K_1 , K_2 - такие различные минимальные нормальные подгруппы из G , что $G/K_1 \in S *_5 \mathscr{L}_3$. i=1,2 . Докажем, что $G \in S *_5 \mathscr{L}_3$. Очевидно, \mathscr{L}_3 - проекторы из G принадлежат f(p) для каждого простого p . Пусть H/K - произаольный главный фактор группы G , расположенный выше K_3 и F - некоторый \mathscr{L}_3 -проектор группы G . Так как $G/K_3 \in S *_5 \mathscr{L}_3$, то, очевидно, F либо покрывает, либо изолирует каждый главный фактор группы G , расположенный выше K_3 . Да - лее, из того, что $G/K_2 \in S *_5 \mathscr{L}_3$, вытекает, что FK_2/K_2 либо по

крывает, либо изолирует K_1K_2/K_2 . Если FK_2/K_2 изолирует K_1K_2/K_2 , то легко видеть, что $F\cap K_1=1$, и поэтому F изолирует K_1 . Если же FK_2/K_2 покрывает K_1K_2/K_2 , то $FK_2 \supseteq K_1K_2$. Отсюда, ввиду теоремы 2.1 работы [22], $K_1K_2 = K_2$ ($F\cap K_1$). Следовательно, $F\cap K_1 = K_1$, и поэтому F покрывает K_2 . Итак, мы показали, что F либо покрывает, либо изолирует каждый главный фактор группы G в ее главном ряду, проходящем через K_1 .

Пусть R/S — произвольный главный фактор группы G и h— такой локальный экран, что h (ρ) = h , h (ρ) для каждого простого ρ . Если R/S — h —центральный главный фактор, то, используя лемму 1.3, получаем, что F покрывает R/S . Итак, можно считать, что R/S — h —эксцентральный главный фактор группы G . Рассмотрим два случая.

- 1. Подгруппа K_i покрывает R/S . Тогда, очевидно, $R/S \simeq K_i$. Отсюда, в силу леммы 1.3, $F \cap K_i = I$. Следовательно, по теореме 2.1 работы [22] , $F \cap R \subseteq F \cap K_i$ $S = F \cap S$, и поэтому F изолирует S .
 - 2. Подгруппа K_{\bullet} изолирует R/S .
- В этом случае $R/S \simeq K_1R/K_1S$, и поэтому из леммы 1.3 вытекает, что F изолирует K_1R/K_1S . Используя теорему 2.1 работы [22], имеем $F \cap R \subseteq (F \cap K_1)(F \cap S)$. Поэтому, применяя снова ту же теорему, получаем $F \cap R = (F \cap S)(F \cap K_1 \cap R) \subseteq S$. Следовательно, F изолирует R/S. Таким образом, F DM—подгруппа из G. Теорема доказана.

§ 2. Максимальные экраны локальных формаций

В работе [7] анонсирована следующая теорема, в которой использу - ются формационные произведения первого рода.

ТЕОРЕМА 2.1. Пусть $\mathcal{F} \subseteq \mathcal{Z}$ — некоторые формации, причем \mathcal{F} локальна, а каждая группа из \mathcal{Z} имеет $\pi(\mathcal{F})$ — разрешимый \mathcal{F} — корадикал. Тогда справедливы следующие утверждения:

- 1) ${\mathcal F}$ имеет единственный максимальный локальный ${\mathcal X}$ -экранf ;
 - 2) если ψ максимальный внутренний

локальный экран формации $\mathfrak F$, тоf'(
ho)= $=(S*, \Psi(\rho))\cap \mathscr{X}$ для каждого простого ρ .

Эта теорема подробно излагается в монографии Л.А.Шеметкова [5], 22] , поэтому доказательство ее мы не приводим.

Заметим только, что теорема 2.1 при $\mathcal{U} = \mathcal{O}_{\mathcal{V}}$ и $\mathcal{X} = \mathcal{F}$ включает результаты Картера, Хоукса [19] , Шмида [18] , а при $\mathcal{U} = \mathcal{X} = \mathcal{T}$ и $\mathcal{F} \supseteq \mathcal{U}$ результат Дёрка [20].

некоторый класс групп с $\pi(\,arsigma\,(\,arsigma\,)$ -разрешимыми $\,arsigma\,$ -корадикалами. Экран $\,
eq \,$ формации ${\mathfrak F}$ назовем ${\mathfrak Z}$ -монотонным, если для каждой группы ${\mathcal G}\in {\mathfrak Z}$ ее \mathcal{F} -проектора \mathcal{F} из того, что $\mathcal{F} \subseteq \mathcal{K} \subseteq \mathcal{L} \subseteq \mathcal{G}$, всегда следует $K^{f(p)} \subseteq L^{f(p)}$ для всех простых $p \in \pi(S)$.

ТЕОРЕМА 2.2. Пусть Ӻ ⊆ ₤ - некоторые фор мации, причем \S локальна, а ${m x}$ ${m S}$ - замк нута и каждая группа из 🗜 имеет $\pi(S)$ -разрешимый S-корадикал. Тогда справедливы следующие утверждения:

- 1) 🕏 имеет единственный максималь ный ${m x}$ -монотонный локальный ${m x}$ -экран
- 2) если ψ -максимальный внутренний локальный экран формации ${\mathfrak F}$, то $f({\mathcal P})=$ $=(\mathcal{F}^*,\psi(\rho))\cap \mathcal{X}$ для любого простого ρ .

ДОКАЗАТЕЛЬСТВО. Ввиду теоремы 3.3 из [5] формация 🖇 имеет единственный максимальный внутренний локальный экран ψ . Пусть f такой локальный экран, что $f(
ho) = (\mathcal{F} *_2 \psi(
ho)) \cap \mathscr{X}$ для любого простого P (очевидно, (S *, ψ (p)) \cap \mathscr{X} - формация) . Докажем, что f - \mathscr{X} -монотонный локальный экран. Пусть группа $\mathscr E$ принадлежит $\mathscr X$ и $\mathcal F$ -

 ${\mathfrak F}$ -проектор группы ${\mathcal G}$. Возьмем такие подгруппы ${\mathcal K}$ и ${\mathcal L}$ группы ${\mathcal G}$, что $\mathcal{F} \subseteq \mathcal{K} \subseteq \mathcal{L} \subseteq \mathcal{G}$. Пусть \mathcal{D} - простое число, принадлежащее $\mathscr{R}(\mathcal{F})$. Очевидно, $\psi \leqslant f$. Поэтому $f(\rho) \neq \phi$. Так как \mathcal{F} - \mathcal{F} -проектор груп пы K , принадлежащей $\mathcal X$, то $F^{\psi(p)} \subseteq K^{f(p)}$. Предположим, что N - такая нормальная подгруппа группы G , что $F^{(p)} \subseteq \mathcal{N}_{\mathsf{M}} \ \mathcal{N} \subset \mathcal{K}^{f(p)}$. . Но тогда \mathcal{F} -проектор FN/N группы K/N принадлежит $\psi(
ho)$, и поэтому $K/N \in f(p)$. Следовательно, $K^{f(p)}$ — наименьшая нормальная в K подгруппа, содержащая $F^{\psi(p)}$. Аналогично $L^{f(p)}$ — наименьшая нормальная в L подгруппа, содержащая $F^{\psi(p)}$. Так как

 $\mathcal{L}^{f(p)}$ П K нормальна в K , то $K^{f(p)}\subseteq \mathcal{L}^{f(p)}$. Итак, f – \mathcal{X} –мо – нотонный локальный \mathcal{X} –экран. Тот факт, что $\mathcal{S}=\langle f \rangle$, легко следует из леммы 1.1.

Пусть f_1 - произвольный $\mathscr X$ -монотонный локальный $\mathscr X$ -экран формации $\mathscr S$. Пусть φ - такой внутренний экран формации $\mathscr S$, что $\varphi(\rho)==f_1(\rho)\cap \mathscr S$ для каждого простого ρ . Тогда $\varphi\leqslant \psi$. Предположим, что группа $\mathscr G$ принадлежит $f_1(\rho)$, где $\rho\in \mathscr M$ ($\mathscr S$) . Пусть F - $\mathscr S$ -про ектор группы $\mathscr G$. Следовательно, $F^{f_1(\rho)}\subseteq \mathscr G^{f_1(\rho)}$, и поэтому $F\in \psi(\rho)$. Но тогда $\mathscr G\in f(\rho)$. Значит, $f_1\leqslant f$.

Теорема доказана.

СЛЕДСТВИЕ 2.2.1. Пусть $\mathcal{F} \subseteq \pounds$ - некоторые формации, причем \mathcal{F} локальна, а \pounds \mathcal{F} - замкнута и каждая группа из \pounds имеет нильпотентный \mathcal{F} - корадикал. Если ψ - максимальный внутренний локаль - ный экран формации \mathcal{F} , то локальный экран \mathcal{F} такой, что для каждого простого \mathcal{F} имеет место $\mathcal{F}(\mathcal{F}) = (\mathcal{F} * \psi(\mathcal{F})) \cap \pounds$, яв - ляется максимальным \pounds - монотонным локальным \pounds - экраном формации \mathcal{F}

ДОКАЗАТЕЛЬСТВО этого утверждения вытекает непосредственно из доказанной теоремы и теоремы 21.5 из [5].

§ 3. Максимальные экраны порожденных локальных формаций

ЛЕММА 3.1. Пусть f_1, f_2 - максимальные внутренние локальные экраны соот ветственно формаций $\mathcal{F}_1, \mathcal{F}_2$. Тогда \mathcal{F}_1 является подформацией \mathcal{F}_2 в том и только в том случае, когда $f_1 \leqslant f_2$

ДОКАЗАТЕЛЬСТВО леммы мы опускаем, так как оно помещено в моно - графии $[5\ ,\ c.65]$.

Проверкой легко установить, что справедлива следующая

ЛЕММА 3.2. Если $\mathfrak F$ - произвольная непустая формация, то локальный экранfтакой, что для каждого простого ho

имеет место $f(p) = \mathcal{N}_p \mathcal{F}$, является макси - мальным внутренним локальным экраном формации $\mathcal{N}\mathcal{F}$.

ЛЕММА 3.3. Пусть в группе G все мини-мальные нормальные подгруппы разрешимы. Если G имеет не более двух минимальных нормальных подгрупп и $O(G)=\emptyset$ для некоторого простого P, то G имеет точное неприводимое представление над конечным полем характе — ристики P

Лемма доказана.

ТЕОРЕМА 3.1. Пусть $\mathcal{U}=f$, $\mathcal{S}=\mathcal{G}$ - некоторые формации. Локальный экран f такой, что для каждо простого p имеет место $f(p)=\mathcal{U}_p\left(\mathbf{S}*,\mathbf{G}\right)$, является макси - мальным внутренним локальным экра - ном формации $lform\left(\mathbf{S}*,\mathbf{G}\right)$.

ДОКАЗАТЕЛЬСТВО. Пусть f - максимальный внутренний локальный экран формации ℓ form $(\mathcal{F} *, \mathcal{L}_{\mathcal{F}})$. Так как $\mathcal{F} *, \mathcal{L}_{\mathcal{F}} \subseteq \mathcal{R}$ $(\mathcal{F} *, \mathcal{L}_{\mathcal{F}})$, то ℓ form $(\mathcal{F} *, \mathcal{L}_{\mathcal{F}}) \subseteq \mathcal{R}$ $(\mathcal{F} *, \mathcal{L}_{\mathcal{F}})$. Следовательно, по леммам 3.1 и 3.2, $f(\mathcal{F}) \subseteq \mathcal{R}_{\mathcal{F}}(\mathcal{F} *, \mathcal{L}_{\mathcal{F}})$. Докажем обратное включение. Предположим, что оно неверно. Выберем в классе $\mathcal{R}_{\mathcal{F}}(\mathcal{F} *, \mathcal{L}_{\mathcal{F}}) \circ f(\mathcal{F})$ группу \mathcal{F} , имеющую наименьший порядок. Тогда \mathcal{F} имеет единственную минимальную

нормальную подгруппу K, совпадающую с $G^{f(P)}$. Очевидно, $\mathcal{O}_{\mathcal{P}}(G)=f$. Следовательно, по лемме 3.3, G- неприводимая группа автоморфизмов некоторой \mathcal{P} -группы \mathcal{N} . Пусть $\mathcal{F}=\mathcal{N}\times G$ — расширение группы G посредством \mathcal{N} . Легко видеть, что G не принадлежит G. Тогда G-максимальная G-абнормальная подгруппа группы G. Следовательно, по лемме 13.3 из G-критична в G-критична в G-критична в G-критична G-

Теорема доказана.

ТЕОРЕМА 3.2. Пусть каждая группа из Жимеет π(乐)-разрешимый ⊱-корадикал, где - формация с максимальным внут - ренним локальным экраном ψ. И пусть

 \mathcal{L}_{p} - такая формация, что $\mathcal{H}_{p}\mathcal{L}_{p}=\mathcal{L}_{p}\subseteq \mathcal{F}\star_{2}\psi(p)$ для всех простых $p\in \pi(\mathcal{F})$. Тогда ло-кальный экран f такой, что для каж - дого простого p имеет место

$$f(p) = \begin{cases} \emptyset, \text{ если } \mathcal{Y} = \emptyset, \\ \mathcal{N}_p(\mathcal{S}_2 \mathcal{Y}), \text{ если } \mathcal{Y} \neq \emptyset, \end{cases}$$

является максимальным внутренним локальным экраном формации lform (5*2 %).

Если $\mathcal{L}_{\mathcal{F}} \neq \emptyset$, то, в силу лемм 3.1 и 3.2, $f(\rho) \subseteq \mathcal{H}_{\mathcal{F}}(\mathcal{F} *_{2} \mathcal{L}_{\mathcal{F}})$ для всех простых ρ . Пусть G - группа наименьшего порядка из класса $\mathcal{H}_{\mathcal{F}}(\mathcal{F} *_{2} \mathcal{L}_{\mathcal{F}}) \cdot f(\rho)$ и F - \mathcal{F} -проектор группы G . Рассмотрим регулярное сплетение $\mathcal{F} = \mathcal{P} \cdot \mathcal{G}$, где $|\mathcal{P}| = \rho$. Тогда $\mathcal{F} = \mathcal{N} \wedge G$, где \mathcal{N} - элементарная абелева \mathcal{P} -группа. Очевидно, $\mathcal{N} = \mathcal{F}_{\mathcal{F}}(\mathcal{F})$. Если $\mathcal{V}(\rho) = \emptyset$, то \mathcal{F} - \mathcal{F} -проектор $\mathcal{F}\mathcal{N}$, и поэтому \mathcal{F} -проектор группы \mathcal{F} . Следовательно, $\mathcal{F} \in \mathcal{F} *_{2} \mathcal{L}_{\mathcal{F}} \subseteq \mathcal{L}$ form $(\mathcal{F} *_{2} \mathcal{L}_{\mathcal{F}})$ и $\mathcal{F} \simeq \mathcal{F}/\mathcal{F}_{\mathcal{F}}(\mathcal{F}) \in \mathcal{F}(\rho)$. Противоречие. Пусть $\mathcal{V}(\rho) \neq \emptyset$. Тогда из

теоремы 15.7 из [5] и леммы 2 из [23] вытекает, что FN - S-проек - тор группы Γ . Так как $FN \in \mathcal{H}_p$ $\mathcal{H}_p = \mathcal{H}_p$ то $\Gamma \in S *_2 \mathscr{H}_p$. Поэтому $G \cong \Gamma / F_p ' \Gamma) \in f(p)$. Противоречие.

Теорема доказана.

ЛЕММА 3.4. Пусть f_1, f_2 — формации с максимальными внутренними локальными экранами f_1, f_2 . Тогда локальная группо вая функция φ такая, что

$$\varphi\left(\rho\right) = \left(\left(\mathcal{U} \setminus \left(\mathcal{S}_{1} *_{2} f_{1}\left(\rho\right)\right) \cap \left(\mathcal{S}_{1} *_{3} \mathcal{S}_{2}\right)\right) \cup f_{2}\left(\rho\right)\right)$$

для каждого простогоho , является локальной групповой функцией формации $m{F_1}*_{m{z}}$.

ДОКАЗАТЕЛЬСТВО. Докажем, что $<\varphi>=$ f, *, f, для групповой функции φ , указанной в теореме.

Пусть G - группа наименьшего порядка из класса $(S, *_3 S_2) < \varphi > 0$. Тогда G имеет единственную минимальную нормальную подгруппу K , совпадающую с G^{*} . Очевидно, K f_1^* -эксцентральна, где f_2^* - такая локальная групповая функция, что $f_1^*(\rho) = S_1 *_2 f_2^*(\rho)$ для каждого простого ρ . Но тогда

$$\mathcal{G}/\mathcal{C}_{\mathcal{G}}(K) \in (\mathcal{U} \setminus f_1^*(\rho)) \cap (\mathcal{F}_1 *_3 \mathcal{F}_2) \subseteq \mathcal{V}(\rho).$$

Следовательно, $\mathcal{G} \in \langle \varphi \rangle$. Противоречие.

Остается показать, что $f_1 *_3 f_2 \supseteq <\varphi>$. Справедливость этого включения вытекает по индукции, ввиду того, что $\varphi(\rho) \cap f_*^*(\rho) \subseteq f_2(\rho)$ для каждого простого ρ

Лемма доказана.

лемма 3.5. Пусть каждая группа из \mathcal{U} имеет разрешимый $f_1(\rho)$ -корадикал для всех простых $\rho\in \pi(\mathcal{F}_1)$, где \mathcal{F}_2 -формация с максимальным внутренним локальным экраном f_1 . Пусть \mathcal{F}_2 -формация с максимальным внутренним локальным экраном f_2 . Если $\mathcal{F}_3\subseteq \mathcal{F}_2$ и f-максимальный внутренний локальный экран формации $f_0\tau m$ $(\mathcal{F}_1*_3\mathcal{F}_2)$, то справедливы следую -

щие утверждения:

1) $\varphi \leqslant f$, где ψ - такая локальная групповая функция формации $\mathcal{S}_1 *_3 \mathcal{S}_2$, что

$$\varphi(\cdot \rho) = (((\mathcal{U} \setminus (\mathcal{S}, *_2 f, (\rho)) \cap (\mathcal{S}, *_3 \mathcal{S}_2)) \cup f_2(\rho))$$

для каждого простого ρ ;

2) $f = \psi$, где ψ - такой локальный экран, что $\psi(\rho) = \mathcal{N}_{\rho}$ form $\varphi(\rho)$ для всех простых ρ , где φ - групповая функция из утверждения 1).

ДОКАЗАТЕЛЬСТВО. Пусть f_1^* - такой локальный экран, что $f_1^*(\rho) = -\xi_1 *_2 f_1(\rho)$ для всех простых ρ и φ - такая локальная группо - вая функция, что

$$\varphi(\rho) = ((\mathcal{U} \setminus f_1^*(\rho)) \cap (\mathcal{F}_1 *_3 \mathcal{F}_2)) \cup f_2(\rho)$$

для каждого простого ρ . Тогда, по лемме 3.4, φ является внутрен - ней локальной групповой функцией формации $\mathcal{F}, *_3 \mathcal{F}_2$.

Докажем первое утверждение леммы. Предположим, что оно неверно. Тогда существует такое простое ρ , что $\varphi(\rho)$ не содержится в $f(\rho)$ где f - максимальный внутренний экран формации $\ell form (\mathcal{F}, *, \mathcal{F}_p)$. Выберем в классе $\varphi(\rho) \setminus f(\rho)$ группу G , имеющую наименьший порядок.

Если $f_{7}(\rho)=\emptyset$, то $\varphi(\rho)=\mathcal{F}_{7}*_{3}\mathcal{F}_{2}$. Очевидно, $\mathcal{O}_{\rho}(\mathcal{G})=f$ Рассмотрим регулярное сплетение $\mathcal{F}=\mathcal{P}\iota\mathcal{G}$, где $|\mathcal{F}|=\rho$. Тогда $\mathcal{F}=\mathcal{F}_{2}$, где $|\mathcal{F}|=\rho$. Тогда $|\mathcal{F}|=\rho$. Противоречие.

Предположим, что $f_1(\rho) \neq \emptyset$. Если $G \in f_1^*(\rho)$, то $G \in \varphi(\rho) \cap f_1^{*}(\rho) \subseteq f_2(\rho)$. Но $\mathcal{F}_2 \subseteq lform(\mathcal{F}_1 *_3 \mathcal{F}_2)$. Поэтому, по лемме 3.1, имеем $f_2(\rho) \subseteq f(\rho)$. Следовательно, $G \in f(\rho)$. Противоречие. Итак, можно считать, что G не принадлежит $f_1^*(\rho)$.

Если G имеет две различные минимальные нормальные подгруппы K_i и K_i такие, что $G/K_i \in \varphi(\rho)$, i=1,2 , то $G/K_i \in f(\rho)$ и поэтому $G \in f(\rho)$, что невозможно. Если же G/K_i не принадлежат $\varphi(\rho)$, i=1,2 , то $G/K_i \in f_i^*(\rho)$. Следовательно, $G \in f_i^*(\rho)$. Противоречие.

Предположим, что ${\cal G}$ имеет не более двух минимальных нормаль -

ных подгрупп. Если G имеет точно две различные минимальные нормальные подгруппы K_1 и K_2 , причем $G/K_1 \in \varphi(p)$ и G/K_2 не принадле — жит $\varphi(p)$, то $G/K_1 \in f_1$ (p) и $G/K_2 \in f_1^*$ (p) . Очевидно, K_1 и K_2 являются подгруппами $f_1(p)$ — корадикала группы G . Следовательно, G и G разрешимы и G и G поэтому, по лемме 3.3, группа G является неприводимой группой автоморфизмов некоторой G группы G . Пусть G и G — расширение группы G посредством G . Так как G и G — G

Докажем второе утверждение леммы. Пусть ψ , — такой локальный экран, что ψ , $(p) = form <math>\varphi(p)$ для каждого простого p. Так как, по 1), имеет место $\varphi \leqslant f$, то ψ , $\leqslant f$. Очевидно, $<\psi>=<\psi$, Следова — тельно, $<\psi>\subseteq lform (\mathcal{F},*_3\mathcal{F}_2)$. С другой стороны, из определения $lform (\mathcal{F},*_3\mathcal{F}_2)$ вытекает, что $lform (\mathcal{F},*_3\mathcal{F}_2)\subseteq <\psi>$. Теперь справедливость утверждения 2 очевидна, в силу теоремы 3.3 из [5].

Лемма доказана.

ТЕОРЕМА 3.3. Пусть $\mathcal{F}_1 \subseteq \mathcal{F}_2$ — локальные формации, f_1, f_2 — максимальные внутренние локальные экраны соответственно формаций \mathcal{F}_1 , \mathcal{F}_2 . Если каждая группа из \mathcal{U} имеет разрешимый $f_1(\rho)$ — корадикал для всех простых $\rho \in \mathcal{T}(\mathcal{F}_1)$, то локальный экран f такой, что для каждого простого ρ имеет место

$$f(\rho) = \begin{cases} f_2(\rho), & \text{если } f_1(\rho) = \mathcal{F}_1, \\ \mathcal{H}_{\rho}(\mathcal{F}_1 *_3 \mathcal{F}_2), & \text{если } f_1(\rho) \neq \mathcal{F}_1, \end{cases}$$

является максимальным внутренним ло-кальным экраном формации $lform\left(\mathcal{F},\star_{3}\mathcal{F}_{2}
ight)$.

ДОКАЗАТЕЛЬСТВО. Пусть $\mathcal{F}^*=\mathcal{F}, *_3\mathcal{F}_2$ и $\mathcal{F}=\ell$ form $(\mathcal{F}, *_3\mathcal{F}_2)$. Используя лемму 3.5, имеем, что \mathcal{F} обладает единственным максималь – ным внутренним локальным экраном f таким, что $f(\rho)=\mathcal{H}_\rho$ form $\varphi(\rho)$ для каждого простого ρ , причем $\varphi(\rho)=((\mathcal{U} \setminus (\mathcal{F}, *_2f_7(\rho))\cap \mathcal{F}^*)\cup f_2(\rho)$ для каждого простого ρ . Поэтому для доказательства теоремы достаточно

выяснить строение $form \; arphi \left(
ho
ight) \;\;\;\;\;$ для всех простых ho .

Пусть $f_1(\rho) = S_1$, ρ простое. Тогда $\varphi(\rho) = f_2(\rho)$, и поэтому f07 π $\varphi(\rho) = f_2(\rho)$. Так как f_2 - полный экран, то $f(\rho) = f_2(\rho)$. Предположим, что $f_1(\rho) \neq S_1$, где ρ простое. Если $f_1(\rho) = \emptyset$, то $\varphi(\rho) = S_1$ и поэтому $f_1(\rho) = S_2$.

Пусть $f,(\rho) \neq \emptyset$. Докажем, что $S = form \, \varphi(\rho)$. Очевидно, $form \, \varphi(\rho) \subseteq S^*$. Докажем обратное включение. Пусть X - произвольная группа из S^* . Выберем в классе S , f , (ρ) группу G , имеющую наименьший порядок. Тогда G имеет единственную минимальную нормальную подгруппу K , совпадающую с $G^{f,(\rho)}$. Очевидно, K разрешима и $O_P(G) = I$. Следовательно, по лемме 3.3, G - неприводимая группа автоморфизмов некоторой P -группы N . Пусть $\Gamma = N \times G$. Так как $\Gamma/N \cong G \in \varphi(\rho)$, то $\Gamma \in S^*$, ввиду леммы 3.4. Легко видеть, что $\Gamma \in \varphi(\rho)$. Пусть $\Gamma = \Gamma \times X$. Очевидно, $\Gamma \in \varphi(\rho) \subseteq form \, \varphi(\rho)$. Следовательно, $X \in form \, \varphi(\rho)$, и $S^* = form \, \varphi(\rho)$. Поэтому $f(\rho) = R_D S^*$

Теорема доказана.

ЛЕММА 3.6. Если \S - некоторая непустая формация и π - некоторое множество простых чисел, причем $(g_{\pi} \cap \mathcal{U})\mathfrak{F} = \mathfrak{F}$, то локальный экран f такой, что для каждого простого ρ имеет место

$$f(p) = \begin{cases} \mathcal{F}, & \text{если} \ p \in \pi, \\ (\mathcal{O}_{\pi}, \cap \mathcal{U}) \mathcal{F}, & \text{если} \ p \in \pi', \end{cases}$$

является максимальным внутренним локальным экраном формации $(\mathcal{O}_{\mathcal{F}}\cap\mathcal{U})\mathcal{F}$.

ДОКАЗАТЕЛЬСТВО. Докажем, что $(\mathcal{O}_{\pi}, \cap \mathcal{U}) \mathcal{F} = \langle f \rangle$. Очевидно, $(\mathcal{O}_{\pi}, \cap \mathcal{U}) \mathcal{F} \subseteq \langle f \rangle$. Докажем, что $\langle f \rangle \subseteq (\mathcal{O}_{\pi}, \cap \mathcal{U}) \mathcal{F}$. Предположим, что это не так. Пусть G - группа, имеющая наименьший порядок из класса $\langle f \rangle = (\mathcal{O}_{\pi}, \cap \mathcal{U}) \mathcal{F}$. Тогда G обладает единственной мини - мальной нормальной подгруппой K . Пусть \mathcal{O}_{π} , $(G/K) = \mathcal{L}/K$. Тогда $G/\mathcal{L} \in \mathcal{F}$ и $\mathcal{L}/K \in \mathcal{O}_{\pi}$, $\cap \mathcal{U}$. Будем считать, что \mathcal{L} - подгруппа минимального порядка с тем свойством, что $G/\mathcal{L} \in \mathcal{F}$ и $\mathcal{L}/K \in \mathcal{O}_{\pi}$, $\cap \mathcal{U}$.

Если K неабелева, то $\mathcal{C}_{\mathcal{F}}(K)=1$, и поэтому $G\in (\mathcal{O}_{\mathcal{R}}\cap\mathcal{U})$ \mathcal{F} ,

что невозможно. Предположим, что K абелева. Если $K\in \mathcal{G}_{oldsymbol{\pi}}$, $\cap~\mathcal{U}$, то $\mathcal{L}\in\mathcal{G}_{\mathfrak{C}}$, $\cap\mathcal{U}$, и поэтому $\mathcal{G}\in(\mathcal{G}_{\mathfrak{C}},\cap\mathcal{U})$ \mathcal{F} . Противоречие. Если же $\mathcal{K}\in\mathcal{G}_{\mathfrak{C}}\cap\mathcal{U}$, то $\mathcal{G}/\mathcal{C}_{\mathfrak{C}}(\mathcal{K})\in\mathcal{F}$. Следовательно, $\mathcal{G}/\mathcal{C}_{\mathfrak{C}}(\mathcal{K})\cap$ \cap \angle \in \mathcal{E} и \angle \subseteq $\mathcal{E}_{\mathcal{E}}$ (\mathcal{K}) , ввиду минимальности выбора \angle . По теореме Шура-Цассенхауза, K имеет в \angle дополнение N . Легко видеть, что N - нормальная π' -холловская подгруппа группы \angle . Но тогда N нормальная подгруппа группы G . Следовательно, $\mathcal{N}=f$, и поэтому $G \in (\mathcal{O}_{\sigma} \cap \mathcal{U})$ $S = S = (\mathcal{O}_{\sigma}, \cap \mathcal{U})$ S . Противоречие. Теперь справедливость леммы вытекает, ввиду теоремы 3.3 из [5].

Лемма доказана.

TEOPEMA 3.4. Пусть $\mathcal{F}_{,}\subseteq\mathcal{F}_{2}$ - локальные формации, f_1,f_2 - максимальные внутренние локальные экраны соответственно формаций \mathcal{F}_1 , \mathcal{F}_2 . Если \mathcal{U} - множество всех $\pi(\mathcal{F}_2)$ -разрешимых групп из \mathcal{G} , то ло -кальный экран f такой, что для каж дого простого ho имеет место

$$f(\rho) = \begin{cases} f_{2}(\rho) \cdot e c \pi u f_{1}(\rho) = S_{1}, \\ \mathcal{R}_{p}(S_{1} *_{4} S_{2}) & e c \pi u f_{1}(\rho) \neq S_{2}, \end{cases}$$

является максимальным внутренним ло-

кальным экраном формации $lform(S,*,S_2)$. доказательство. Пусть $S=lformS^*$, где $S^*=S_1^**,S_2^*$. согласно теореме 3.3 из [5] формация 🗲 имеет единственный максимальный внутренний локальный экран 🗜 .

Пусть $f_1(\rho) = \mathcal{F}_1$, где ρ простое. Докажем, что $f(\rho) = f_2(\rho)$. Очевидно, $\mathcal{F}_2\subseteq\mathcal{F}$. Следовательно, по лемме 3.1, $f_2\leqslant f$, и, значит, $f_2(\rho)\subseteq f(\rho)$. Пусть G - группа из \mathcal{F} . Так как $f_1(\rho)=\mathcal{F}_2$, то из леммы 1.3 вытекает, что ${\mathcal S}$ -проектор группы ${\mathcal G}$ покрывает каждый главный фактор из $\,{\cal G}\,$, порядок которого делит $\,{\cal P}\,$. Но тогда и $\,{\cal F}_{\!\!\!2}\,$ -нормализатор группы $\,G\,$ покрывает эти же факторы. Следовательно, по теореме 21.1.1 из [5] , каждый из них является f_2 -центральным. Значит, $G\in (\mathcal{O}_P,\cap\mathcal{U})\,f_2(p)$. Итак, $\mathcal{F} \subseteq (\mathcal{O}_P,\cap\mathcal{U})\,f_2(p)$, и поэтому $\mathcal{F} \subseteq (\mathcal{O}_P,\cap\mathcal{U})\,f_2(p)$. Но тогда, ввиду лемм 3.1 и 3.6, имеем $f(p) \subseteq f_{\ell}(p).$

Предположим, что $f_1(\rho) \neq \mathcal{F}_1$, ρ простое. Докажем, что $f(\rho) = \mathcal{N}_0 \mathcal{F}^*$. Так как $\mathcal{F} \subseteq \mathcal{N} \mathcal{F}^*$, то из лемм 3.1 и 3.2 следует, что

 $f(\rho)\subseteq\mathcal{H}_{\rho}$ § . Пусть G - группа наименьшего порядка из \mathcal{H}_{ρ} § . Очевидно, $G\in \mathbb{S}^*$.

Пусть $f_{\cdot}(\rho) = \emptyset$. Рассмотрим регулярное сплетение $\Gamma = P \imath \mathcal{G}$, где $|P| = \rho$. Тогда $\Gamma = \mathcal{N} \lambda \mathcal{G}$, где \mathcal{N} - элементарная абелева ρ -группа Очевидно, $\mathcal{N} = F_{\rho}(\Gamma)$. Пусть $F_{\rho} = \mathcal{F}_{\rho}$ -проектор группы \mathcal{G}_{ρ} . Тогда, очевидно, $F_{\rho} = \mathcal{F}_{\rho}$ -проектор $F_{\rho} = \mathcal{F}_{\rho}$, и поэтому $F_{\rho} = \mathcal{F}_{\rho}$ -проектор группы Γ . Так как $\Gamma \in \mathcal{F}_{\rho}$, то $\Gamma \subseteq \mathcal{H}_{\rho}$, где $\Gamma \in \mathcal{H}_{\rho}$ некоторый $\Gamma \in \mathcal{H}_{\rho}$. Из теоремы 21.6 книги $\Gamma \in \mathcal{F}_{\rho}$ вытекает, что $\Gamma \in \mathcal{F}_{\rho}$. Следовательно, $\Gamma \in \mathcal{F}_{\rho}$ $\Gamma \in \mathcal{F}_{\rho}$, и поэтому $\Gamma \in \mathcal{F}_{\rho}$. Противоречие. Предположим, что $\Gamma \in \mathcal{F}_{\rho}$. Докажем вначале, что в классе

Предположим, что $f_r(\rho) \neq \emptyset$. Докажем вначале, что в классе $f_r \circ f_r(\rho)$ существует такая группа X , что выполняются следующие условия:

1) χ имеет единственную минимальную нормальную подгруппу, порядок которой является ρ -числом;

2) Z(X) - собственная подгруппа $f_{\tau}(\rho)$ -корадикала группы X Выберем в классе $f_{\tau}(\rho)$ группу Y , имеющую наименьший порядок. Тогда Y обладает единственной минимальной нормальной подгруппой K , совпадающей с $Y^{f_{\tau}(\rho)}$ Очевидно, $\mathcal{O}_{\rho}(Y) = I$. Пусть K - Q -группа для некоторого простого $Q \neq \rho$ и $Y \in f_{\tau}(Q)$. Пусть Q - Q -дополнение группы Y и M - Y -модуль над полем из Q элементов, индуцированный неприводимым тривиальным Q -модулем над этим же полем. Тогда M - главный неразложимый модуль и его цоколь является неприводимым тривиальным Y -модулем над полем из Q элементов. Очевидно, M - точный модуль. Пусть $X = M \times Y$. Так как модуль M точный, то $Z(X) \subseteq M$. Но цоколь модуля M - единственная минимальная нормальная подгруппа группы X . Поэтому Z(X) = M , и требование 1) для группы X выполняется. Так как $X^{f_{\tau}(\rho)}$ не содержится в M и $Z(X) \subseteq X^{f_{\tau}(\rho)}$, то Z(X) является собственной подгруппой группы X и условие 2) для X справедливо.

Пусть $X = X \times G$. Очевидно, подгруппа $F_{\tau} = X \times F_{\tau} - F_{\tau}$ -проектор группы $X \times G_{\tau}$. Пусть $F = F_{\tau}^{f_{\tau}(p)} \cap X = f_{\tau}$. Тогда, по лемме 1.1 работы [14] , $F_{\tau}^{f_{\tau}(p)} \subseteq Z(X) \times F_{\tau}$. Следовательно, $X/Z(X) \simeq X \times Z(X) \times X \times F \in f_{\tau}(p)$, что противоречит тому, что Z(X) — собственная подгруппа из $X^{f_{\tau}(p)}$. Итак, можно считать, что $F \neq f_{\tau}(p)$

По лемме 3.3, X обладает точным неприводимым X -модулем N над полем из p элементов. Следовательно, ввиду того, что $\mathcal{F} \neq \ell$,име-

ем C_N (F^*) = / . Пусть R - регулярный G -модуль над полем из P элементов. Рассмотрим тензорное произведение $M^*=N\otimes R$ с операцией $(\hbar\otimes \chi)(x,g)=\hbar x\otimes \chi g$, где $\chi\in R$, $\hbar\in N$, $\chi\in \chi$, $g\in G$. Пусть M^* — ограничение χ -модуля M^* на χ . Тогда M^* — χ с χ обраничение χ -модуля χ на χ . Тогда χ обраничение χ -модуля χ на χ . Тогда χ обраничение χ -модуля χ на χ . Поэтому χ обраничение χ и поэтому χ обраничение χ и поэтому χ обраничение χ на χ обраничение χ обраничение χ на χ обраничение χ на χ обраничение χ на χ обраничение χ обраничение χ на χ обраничение χ обра

ТЕОРЕМА 3.5. Пусть $\mathcal{F}_1\subseteq \mathcal{F}_2$ - локальные формации. Если каждая группа из \mathcal{U} имеет $\pi(\mathcal{F}_2)$ -разрешимый \mathcal{F}_2 -корадикал, то ло-кальный экран f такой, что для каж-дого простого ρ имеет место

Теорема доказана.

$$f(p) = \left[\begin{array}{c} \phi & , \ \mathrm{ec} \ \mathrm{nu} \ p \in \pi'(\ f,) \, , \\ \mathcal{N}_p(\ f, *_{f} \ f_{2}) & , \ \mathrm{ec} \ \mathrm{nu} \ p \in \pi(\ f,) \, , \end{array} \right]$$

является максимальным внутренним локальным экраном формации $form(\mathbf{S}, *_{\mathbf{S}}\mathbf{S}_{2})$ ДОКАЗАТЕЛЬСТВО. Пусть p простое. Если $p \in \pi'(\mathbf{S}_{1})$, то $\mathbf{S}_{1}*_{\mathbf{S}_{2}}\mathbf{S}_{2}=\emptyset$, и поэтому $lform(\mathbf{S}_{1}*_{\mathbf{S}_{2}}\mathbf{S}_{2})=\emptyset$. Следовательно, $f(p)=\emptyset$, где f- максимальный внутренний локальный экран $lform(\mathbf{S}_{1}*_{\mathbf{S}_{2}}\mathbf{S}_{2})$.

Предположим, что $\rho \in \mathcal{R}$ (\mathcal{S}_1). Тогда, очевидно, $f(\rho) \subseteq \mathcal{M}_{\rho}(\mathcal{S}, *_{\mathcal{S}} *_{\mathcal{S}_2})$. Докажем, что $\mathcal{M}_{\rho}(\mathcal{S}, *_{\mathcal{S}_2}) \subseteq f(\rho)$. Выберем в классе $\mathcal{M}_{\rho}(\mathcal{S}, *_{\mathcal{S}_2}) \setminus f(\rho)$ группу \mathcal{G} , имеющую наименьший порядок. Очевидно, $\mathcal{O}_{\rho}(\mathcal{G}) = f$ и $\mathcal{G} \in \mathcal{S}_1 *_{\mathcal{S}_2} \mathcal{S}_2$. Рассмотрим регулярное сплетение $\mathcal{F} = \mathcal{P} \cdot \mathcal{G}$, где $|\mathcal{P}| = \rho$. Тогда $\mathcal{F} = \mathcal{N} \cdot \lambda \mathcal{G}$, где $\mathcal{N} = \mathcal{N} \cdot \mathcal{G}$, где $\mathcal{N} = \mathcal{N} \cdot \mathcal{G}$. Пусть $\mathcal{F} = \mathcal{N} \cdot \mathcal{G}$. Пусть $\mathcal{F} = \mathcal{N} \cdot \mathcal{G}$. Пусть $\mathcal{F} = \mathcal{N} \cdot \mathcal{G}$. Так как $\mathcal{S}_1 \subseteq \mathcal{S}_2$, то, по лемме 3.1,

Теорема доказана.

§ 4. Признаки локальности формационных произведений

ТЕОРЕМА 4.1. Пусть $\mathcal{U} = \mathcal{T}$ и $\mathcal{F} \subseteq \mathcal{G}$ - некоторые формации, причем \mathcal{F} локальна. Тогда $\mathcal{F} *, \mathcal{G}$ локальна в том и только в том случае, когда $\mathcal{F} *, \mathcal{G}_1 = \mathcal{T}$.

ТЕОРЕМА 4.2. Пусть каждая группа из \mathcal{U} имеет разрешимый \mathcal{F} -корадикал, где \mathcal{F} -формация с максимальным внутренним локальным экр**аном** \mathcal{V} . Если \mathcal{H} -та-кая формация, что $\mathcal{F} \subseteq \mathcal{H} = \mathcal{H}$, $\mathcal{H} \subseteq \mathcal{F} *_{\mathcal{U}} \mathcal{V}(\mathcal{P})$ для всех \mathcal{P} из $\mathcal{T}(\mathcal{F})$, то $\mathcal{F} *_{\mathcal{U}} \mathcal{H}$ локальна в том и только в том случае, когда $\mathcal{F} *_{\mathcal{U}} \mathcal{H} = \mathcal{U}$.

ТЕОРЕМА 4.3. Пусть $\mathcal{U} = \mathbf{7}$ и $\mathcal{F}_1 \subseteq \mathcal{F}_2$ - некоторые локальные формации, причем $\mathcal{F}_2 \supseteq \mathcal{N}$. Тогда $\mathcal{F}_1 *_5 \mathcal{F}_2$ локальна в том и только в том случае, когда $\mathcal{F}_1 *_5 \mathcal{F}_2 = \mathcal{N}$.

Доказательства теорем 4.1 - 4.3 однотипны и легко вытекают соответственно из теорем 3.1, 3.2, 3.5 и леммы 3.1.

ТЕОРЕМА 4.4. Пусть $\mathcal{F}_1\subseteq\mathcal{F}_2$ -формации, f_1 , f_2 -максимальные внутренние локальные экраны соответственно \mathcal{F}_1 , \mathcal{F}_2 . Если каж-дая группа из \mathcal{U} имеет разрешимый $f_1(p)$ -корадикал для всех простых p из

 $\pi(S_1)$, то $S_1*_3S_2$ локальна в том и только в том случае, когда $\mathcal{H}_p(S_1*_3S_2)=\cdots=S_1*_3S_2$ для всех простых p со свой -ством $f_1(p)\neq S_1$

ДОКАЗАТЕЛЬСТВО. ЕСЛИ $S_1 *_3 S_2$ локальна, то, в силу теоремы 3.3, $\mathcal{N}_{\rho}(S_1 *_3 S_2) = S_1 *_3 S_2$ для всех простых ρ с условием $f_1(\rho) \neq S_1$. Докажем обратное. Пусть $\mathcal{N}_{\rho}(F_1 *_3 F_2) = S_1 *_3 S_2$ для всех простых ρ таких, что $f_1(\rho) \neq S_1$. Выберем в классе $\ell \not= 0$ обладает единственной минимальной нормальной подгруппой K. Если K неабелева, то $\mathcal{L}_{G}(K) = \ell$, и поэтому $\mathcal{L} \in f(\rho)$, где $\rho \mid K$ и $\ell \in f(\rho)$ наксимальный внутренний локальный экран $\ell \not= 0$ от $\ell \in f(\rho)$. Тогда, ввиду теоремы 3.3, $\ell \in S_1 *_3 S_2$, что невозможно. Предположим, что $\ell \in f(\rho) = S_1$, то $\ell \in \mathcal{N}_{\rho}(S_1 *_3 S_2) = S_1 *_3 S_2$. Если же $\ell \in f(\rho) = S_1$, то $\ell \in \mathcal{N}_{\rho}(S_1 *_3 S_2) = S_1 *_3 S_2$. Противоречие. Теорема доказана.

ТЕОРЕМА 4.5. Пусть существуют некото - рое множество простых чисел G и непустая формация F такие, что $(O_1 \cap \mathcal{U}) F = F$. Пусть $F_1 \subseteq F_2$ - формации, f_1 , f_2 - максимальные внутренние локальные эк - раны соответственно F_1 , F_2 . Если каж-дая группа из \mathcal{U} имеет разрешимый $f_1(\rho)$ - корадикал для каждого $\rho \in \pi(F_1)$ и либо $F_1 = O_1 \cap \mathcal{U}$, либо $F_2 = (O_1 \cap \mathcal{U}) F$, то $F_1 *_3 F_2$ - локальная формация.

ДОКАЗАТЕЛЬСТВО. Если $\mathcal{F}_{r}=\mathcal{O}_{f}$, \cap \mathcal{V} , то \mathcal{F}_{r} обладает макси - мальным внутренним локальным экраном f_{r} таким, что

$$f_{\tau}(p) = \begin{cases} g_{\theta} \cap \mathcal{U} &, \text{ если } p \in \theta' \\ \phi &, \text{ если } p \in \theta \end{cases},$$

Если же $\mathfrak{F}_{i}=(\mathcal{O}_{\mathfrak{O}'}\cap\mathcal{H})\mathfrak{F}$, то, по лемме 3.6, локальный экран f_{i} такой, что для каждого простого ρ имеет место

$$f(\varphi) = \begin{cases} (0, 0, 0) & \text{, если } \rho \in 0' \\ f & \text{, если } \rho \in 0. \end{cases}$$

является максимальным внутренним локальным экраном \S , Очевидно, что в каждом из указанных случаев $f_1(\rho)=\S$, , если $\rho\in G'$, и $f_1(\rho)==\S_1*_2f_1(\rho)$, если $\rho\in G$. Пусть ℓ form $(\S_1*_3\S_2)$ — локальная формация, порожденная $\S_1*_3\S_2$ и f — ее максимальный внутренний локальный экран. Пусть G — группа наименьшего порядка из класса ℓ form $(\S_1*_3\S_2) \times (\S_1*_3\S_2)$. Тогда G обладает единственной минимальной нормальной подгруппой K , совпадающей с $G(\S_1*_3\S_2)$. Пусть f — такой локальный экран, чтс f f — f

Теорема доказана.

ТЕОРЕМА 4.6. Пусть $\mathcal{F}_1\subseteq \mathcal{F}_2$ — формации, f_7 , f_2 — максимальные внутренние локальные экраны соответственно \mathcal{F}_1 , \mathcal{F}_2 . Пусть \mathcal{U} совпадает с множеством всех $\mathcal{T}_2(\mathcal{F}_2)$ — разрешимых групп из \mathcal{O}_1 . Тогда $\mathcal{F}_1*_4\mathcal{F}_2$ локальна в том и только в том случае, когда $\mathcal{N}_p(\mathcal{F}_1*_4\mathcal{F}_2)=\mathcal{F}_1*_4\mathcal{F}_2$ для всех простых p с условием $f_1(p)\neq \mathcal{F}_2$.

ДОКАЗАТЕЛЬСТВО теоремы аналогично доказательству теоремы 4.4.

Следуя [13] , назовем локальную формацию \mathcal{F}_{i} сильно вложенной в некоторую локальную формацию \mathcal{F}_{2} и будем обозначать $\mathcal{F}_{i} << \mathcal{F}_{2}$, если в любой группе \mathcal{F}_{i} , обладающей разрешимым \mathcal{F}_{i} -корадикалом (i=1,2) , \mathcal{F}_{i} -проектор из \mathcal{F}_{i} содержится в некотором \mathcal{F}_{i} -проекторе из \mathcal{F}_{i} . ТЕОРЕМА 4.7. Пусть \mathcal{F}_{i} , \mathcal{F}_{i} - локальные формации и каждая группа из \mathcal{W}_{i} обладает разрешимым \mathcal{F}_{i} - корадикалом (i=1,2) . Если $\mathcal{F}_{i} << \mathcal{F}_{2}$ и $\mathcal{F}_{i} \supseteq \mathcal{W}_{i}$, то \mathcal{W}_{2} - единственная максимальная по включению локальная подформация формации $\mathcal{F}_{i} *_{i} \mathcal{F}_{2}$

ДОКАЗАТЕЛЬСТВО. Очевидно, \mathcal{H} \mathcal{F}_2 – локальная подформация \mathcal{F}_1 \mathcal{F}_2

1. $C_{\kappa}(F^{f_{r}(q)}) = I.$

Так как $M \subseteq G$, P не делит G:M и $M_G=1$, то, по лемме 2.2 из [13], группа G обладает таким точным неприводимым G-модулем N над полем из G элементов, что ограничение N/M модуля M на N имеет фактор-модуль N/N_O , на котором M действует тождественно. Пусть $\Gamma=N \land G$. Так как $F\subseteq M$ и N/M обладает фактор-модулем, на котором M действует тождественно, то $[F^{f_1(P)},N] \subset N$. Пусть F - S -проектор группы FN . Тогда, ввиду леммы 2 из [24] и теоремы 21.10 из [5], получаем, что F $N \not= I$. Очевидно, F - S -проектор группы F . Так как $F \in S$ + S - S -проектор группы F . Так как $F \in S$ + S - S -проектор группы F . По теореме 21.1 из S -

0чевидно, $FC_{\kappa}(F^{f,(q)}) \subseteq H^*$, где H^* – некоторый S_2 -нормализатор группы G . По теореме 21.1 из [5] , H^* либо покрывает, либо изолирует K . Если H^* покрывает K , то, ввиду теоремы 21.1 из [5] , K S_2 -центральна в G , и поэтому $G \in \mathcal{N}_{\rho}$ S_2 . Противоречие. Если H^* изолирует K , то $C_{\kappa}(F^{f,(q)})=I$ и теорема верна

в силу п.1.

Теорема доказана.

СЛЕДСТВИЕ 4.7.1. Пусть каждая группа из \mathcal{U} обладает разрешимым \mathcal{S}_{i} -корадика-лом, где \mathcal{S}_{i} -локальная формация (i=1,2), причем $\mathcal{S}_{i} \ll \mathcal{S}_{2}$ и $\mathcal{S}_{i} \supseteq \mathcal{U}$. Тогда $\mathcal{S}_{i} *_{i} \mathcal{S}_{2}$ локаль-на в том и только в том случае, когда $\mathcal{S}_{i} *_{i} \mathcal{S}_{2} = \mathcal{U} \mathcal{S}_{2}$.

В заключение выражаю искреннюю благодарность профессору Л.А.Шеметкову, под руководством которого выполнена эта работа.

Литература

- 1. Л.А.ШЕМЕТКОВ, Ступенчатые формации групп, Матем.сб., 94, № 4 (1974), 628-648.
- 2. Л.А.ШЕМЕТКОВ, Два направления в развитии теории непростых конечных групп, Успехи матем. н., 30, № 2 (1975) , 179-198.
- 3. Л.А.ШЕМЕТКОВ, **5**-разложение конечной группы, Всесоюзный алгебраический симпозиум. Тезисы докладов, ч.1, Гомель, (1975), 80-81.
- 4. Л.А.ШЕМЕТКОВ, Факторизации непростых конечных групп, Алгебра и логика, 15, № 6 (1976), 648-672.
 - 5. Л.А.ШЕМЕТКОВ, Формации конечных групп, М., Наука, (1978).
- 6. Л.А.ШЕМЕТКОВ, Экраны ступенчатых формаций, 6-й Всесоюзныйный симпозиум по теории групп. Тезисы докладов, Киев, Наукова думка, (1978), 68
- 7. Н.Т.ВОРОБЬЕВ, О максимальных однородных экранах, 14-я Всесоюзная алгебраическая конференция. Тезисы докладов, ч.1, Новосибирск, (1977), 16-17.
- 8. М.Т.ВОРОБЬЕВ, Максимальные экраны и характеризация ₹-проекторов, ДАН БССР, 22, № 1 (1978), 9-11.
- 9. Н.Т.ВОРОБЬЕВ, Максимальные экраны формаций, ДАН БССР, 22, № 7 (1978) , 744-747.
- 10. Н.Т.ВОРОБЬЕВ, О максимальном экране порожденной формации, 6-й Всесоюзный симпозиум по теории групп. Тезисы докладов, Киев, Наукова думка, 1978, с.14-15.
- 11. B.HUPPERT, Endliche Gruppen, 1, Berlin-Heidelberg-New York, (1967).
- 12. W.GASCHÜTZ, Zur Theorie der endlichen auflösbaren Gruppen, Math. Z., 80, H 2 (1963), 300-305.
- 13. K.DOERK, Zur Theorie der Formationen endlicher auflösbarer Gruppen, J.Algebra, 19, N5 (1969), 345-373.

- 14. K.DOERK and T.O.HAWKES, Two questions in the theory of formations, J.Algebra, 16, N 2 (1970), 456-460.
- 15. R.DOERK, Zwei Klassen von Formationen endlicher auflösbarer Gruppen, deren Halbverband gesättigter Unterformationen genau ein maximales Element besitzt, Arch. Math., 21, N 2 (1970), 240-244.
- 16. K.DOERK, Zur Sättigung einer Formation endlicher auflösbauer Gruppen, Arch. Math. 28, N 5 (1977), 561-571.
- 17. C.WRIGHT. In screens and \mathscr{L} -izers of finite solvable groups, Math. Z., 115, N 4 (1970), 273-282.
- 18. P.SCHMID, Lokale Formationen endlicher Gruppen, Math. Z., 137, N 1 (1974), 31-48.
- 19. R.CARTER, T.HAWKES, The \mathfrak{F} -normalizers of a finite solvable groups, J.Algebra, 5, N 2 (1967), 175-202.
- 20. K.DOERK, Die maximale lokale Erklärung einer gesättigten Formation, Math. Z., 133, N 2 (1973), 133-135.
- 21. J.C.BEIDLEMAN and A.R.MAKAN , On saturated formations which are special relative to the strong covering-avoidance property, Proc. Amer. Math.Soc., 47, N 1 (1975), 29-37.
- 22. B.HUPPERT, Zur Theorie der Formationen, J.Algebra, 18, N $_3$ (1969), 345-373.
- 23. K.U.SCHALLER, Einige Sätze über Deck-Meide Untegruppen endlicher auflösbarer "Gruppen, Math.Z., 130, N 2 (1973), 199-206.
- 24. P.D'ARCY, On formations of fi/nite groups, Arch. Math., 25, N 1 (1974), 1-6.
- 25. P.D'ARCY, $\mathcal S$ -Abnormality and theory of finite soluble groupps, J.Algebra, 28, N 4 (1974), 342-361.
- 26. R.W.CARTER, Nilpotent self-normalizing subgroups and system normalizers, Proc. London Math. Soc., 12, N 4 (1962), 535-563.

Поступило 30 ноября 1978 г.