Министерство образования Республики Беларусь Учреждение образования «Витебский государственный университет имени П.М. Машерова» Кафедра геометрии и математического анализа

Ж.В. Иванова, Т.Л. Сурин

ПРИКЛАДНАЯ МАТЕМАТИКА

Методические рекомендации к лабораторным работам

Витебск ВГУ имени П.М. Машерова 2021 УДК 519.6(076.5) ББК 22.185.4я73 И20

Печатается по решению научно-методического совета учреждения образования «Витебский государственный университет имени П.М. Машерова». Протокол № 1 от 27.10.2021.

Авторы: доценты кафедры геометрии и математического анализа ВГУ имени П.М. Машерова, кандидаты физико-математических наук **Ж.В. Иванова**, **Т.Л. Сурин**

Рецензент:

старший преподаватель кафедры математики и информационных технологий УО «ВГТУ» А.В. Коваленко

Иванова, Ж.В.

И20 Прикладная математика : методические рекомендации к лабораторным работам / Ж.В. Иванова, Т.Л. Сурин. – Витебск : ВГУ имени П.М. Машерова, 2021. – 38 с.

Методические рекомендации предназначены для проведения лабораторных занятий и организации самостоятельной работы по предмету «Прикладная математика» для студентов второго курса факультета математики и информационных технологий, обучающихся по специальности 1-26 03 01 Управление информационными ресурсами. Данное издание может быть использовано при проведении лабораторных занятий по дисциплинам «Методы оптимизации» и «Исследование операций» у студентов специальности 1-40 05 01-07 Информационные системы и технологии.

УДК 519.6(076.5) ББК 22.185.4я73

[©] Иванова Ж.В., Сурин Т.Л., 2021

[©] ВГУ имени П.М. Машерова, 2021

СОДЕРЖАНИЕ

Введение	4
Лабораторная работа № 1. Построение математических моделей экономических задач. Модель Леонтьева многоотраслевой эко-	
номики	6
1. Краткие теоретические сведения	6
2. Решение типовых задач	7
3. Задания для лабораторной работы	8
Лабораторная работа № 2. Собственные векторы и собственные значения линейного оператора. Линейная модель обмена	10
1. Краткие теоретические сведения	10
2. Решение типовых задач	12
3. Задания для лабораторной работы	15
Лабораторная работа № 3. Локальный экстремум функции	16
1. Краткие теоретические сведения	16
2. Решение типовых задач	18
3. Задания для лабораторной работы	22
Лабораторная работа № 4. Производная по направлению и гра- диент функции	24
1. Краткие теоретические сведения	24
2. Решение типовых задач	26
3. Задания для лабораторной работы	28
Лабораторная работа № 5. Условный экстремум функции при ограничениях-равенствах	29
1. Краткие теоретические сведения	29
2. Решение типовых задач	33
3. Задания для лабораторной работы	35
Литература	37

ВВЕДЕНИЕ

Данное издание предназначено для проведения лабораторных занятий и организации самостоятельной работы по предмету «Прикладная математика» студентов второго курса факультета математики и информационных технологий, обучающихся по специальности 1-26 03 01 Управление информационными ресурсами. Методические рекомендации будут также полезны студентам специальности 1-40 05 01-07 Информационные системы и технологии при изучении дисциплин «Методы оптимизации» и «Исследование операций».

Основное назначение издания — помочь студентам при подготовке к лабораторным работам и дать рекомендации по выполнению самих лабораторных работ.

Издание охватывает следующие вопросы прикладной математики: математические модели в экономике, модель Леонтьева многоотраслевой экономики; линейная модель обмена; экстремум функции одной и нескольких переменных; производная по направлению и градиент функции; условный экстремум функции. В нем содержатся методические рекомендации и задания к 5 лабораторным работам. В каждом параграфе приведен необходимый теоретический материал, дан алгоритм выполнения работы, разобраны примеры, иллюстрирующие применение алгоритма и приведены задания для лабораторной работы.

Данный материал соответствует учебным программам по предмету «Прикладная математика» для специальности «Управление информационными ресурсами» и по предметам «Методы оптимизации» и «Исследование операций» для специальности «Информационные системы и технологии».

Издание может быть полезно студентам специальности «Прикладная информатика» при изучении предмета «Методы оптимизации».

Лабораторная работа № 1

Построение математических моделей экономических задач Модель Леонтьева многоотраслевой экономики

1. Краткие теоретические сведения

Предположим, что рассматривается n отраслей промышленности, каждая из которых производит свою продукцию. Часть продукции идет на внутрипроизводственное потребление данной отраслью и другими отраслями, а другая часть предназначена для целей конечного (непроизводственного) личного и общественного потребления. Рассмотрим процесс производства за некоторый период времени (например, год).

Введем следующие обозначения:

 x_i — общий (валовой) объем продукции i-ой отрасли ($i=1,\ 2,...,\ n$);

 x_{ij} — объем продукции i-ой отрасли, потребляемой j-ой отраслью в процессе производства (i, j = 1, 2, ..., n);

 y_i — объем конечного продукта i-ой отрасли для непроизводственного потребления.

Коэффициентами прямых затрат называются отношения:

$$a_{ij} = \frac{x_{ij}}{x_j}$$
 (i, j = 1, 2, ..., n). (1)

Обозначим
$$X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$
, $Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$, $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$,

где X — вектор валового выпуска, Y — вектор конечного продукта, A — матрица прямых затрат (технологическая или структурная матрица). Тогда имеет место уравнение:

$$X = A \cdot X + Y \tag{2}$$

ИЛИ

$$(E-A)\cdot X = Y. (3)$$

Основная задача межотраслевого баланса состоит в отыскании такого вектора валового выпуска X, который при известной матрице прямых затрат A обеспечивает заданный вектор конечного продукта Y.

Если матрица (E-A) невырожденная, т.е. $|E-A| \neq 0$, то из формулы (3)

$$X = (E - A)^{-1} \cdot Y = S \cdot Y, \tag{4}$$

где матрица $S = (E - A)^{-1}$ называется *матрицей полных затрат*, элементы s_{ij} равны величине валового выпуска продукции i-ой отрасли, необходимого для обеспечения выпуска единицы конечного продукта j-ой отрасли.

В соответствии с экономическим смыслом задачи значения x_i должны быть неотрицательны при неотрицательных значениях y_i и a_{ij} т.е. если $y_i \ge 0$, $a_{ij} \ge 0$, то $x_i \ge 0$ (i, j = 1, 2, ..., n).

Матрица A называется *продуктивной*, если для любого вектора Y существует решение X уравнения (3). В этом случае и модель Леонтьева называется *продуктивной*.

Критерий продуктивности матрицы A. Матрица A продуктивна, если максимум сумм элементов ее столбцов не превосходит единицы, причем хотя бы для одного из столбцов сумма элементов строго меньше единицы, т.е. матрица A продуктивна, если $a_{ij} \ge 0$ и $\max \sum_{j=1}^{n} a_{ij} \le 1$ (i=1,2,...,n), и существует такое j, что $\sum_{j=1}^{n} a_{ij} < 1$.

2. Решение типовых задач

Пример. В таблице приведены данные об исполнении баланса за отчетный период, усл. ден. ед.:

		Потреб	ление		
			маши-	Конеч-	Вало-
Отрас	сль	энергети-	но-	ный про-	вой вы-
		ка	строе-	дукт	пуск
			ние		
	энергети-	7	21	72	100
Производ-	ка	,	21	12	100
ство	машино-	12	15	123	150
	строение	12	13	123	130

Вычислить необходимый объем валового выпуска каждой отрасли, чтобы объем конечного продукта энергетической отрасли увеличился вдвое, а машиностроительной сохранился на прежнем уровне (предполагается, что коэффициенты прямых затрат каждой отрасли – постоянны).

Решение. Имеем:
$$x_1 = 100$$
, $y_1 = 72$, $x_{11} = 7$, $x_{12} = 21$, $x_2 = 150$, $y_2 = 123$, $x_{21} = 12$, $x_{22} = 15$.

По формуле (1) находим коэффициенты прямых затрат каждой отрасли:

$$a_{11} = \frac{x_{11}}{x_1} = \frac{7}{100} = 0,07;$$
 $a_{12} = \frac{x_{12}}{x_2} = \frac{21}{150} = 0,14;$

$$a_{21} = \frac{x_{21}}{x_1} = \frac{12}{100} = 0,12;$$
 $a_{22} = \frac{x_{22}}{x_2} = \frac{15}{150} = 0,1.$

Таким образом матрица прямых затрат $A = \begin{pmatrix} 0.07 & 0.14 \\ 0.12 & 0.1 \end{pmatrix}$, вектор

валового выпуска
$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
, вектор конечного продукта $Y = \begin{pmatrix} 144 \\ 123 \end{pmatrix}$.

Проверим, выполняется ли критерий продуктивности матрицы прямых затрат A. Сумма элементов первого столбца матрицы 0.07+0.12=0.19<1, сумма элементов второго столбца матрицы 0.14+0.1=0.24<1. тах (0.19;0.24)<1. Следовательно, матрица продуктивна.

Тогда по формуле (4) $X = S \cdot Y$, где $S = (E - A)^{-1}$.

$$(E-A) = \begin{pmatrix} 0.93 & -0.14 \\ -0.12 & 0.9 \end{pmatrix}, |E-A| = 0.93 \cdot 0.9 - 0.14 \cdot 0.12 = 0.8202,$$

$$S = (E-A)^{-1} = \frac{1}{|E-A|} \begin{pmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \end{pmatrix} = \frac{1}{0.8202} \begin{pmatrix} 0.9 & 0.14 \\ 0.12 & 0.93 \end{pmatrix}.$$

$$X = S \cdot Y = \frac{1}{0.8202} \begin{pmatrix} 0.9 & 0.14 \\ 0.12 & 0.93 \end{pmatrix} \cdot \begin{pmatrix} 144 \\ 123 \end{pmatrix} = \frac{1}{0.8202} \begin{pmatrix} 146.82 \\ 131.67 \end{pmatrix} = \begin{pmatrix} 179.01 \\ 160.53 \end{pmatrix}.$$

Т.е валовой выпуск в энергетической отрасли надо увеличить до 179,01 уел. ед., а в машиностроительной — до 160,54уел. ед.

3. Задания для лабораторной работы

Задание 1. Предприятие выпускает три вида изделий A, B, C с использованием двух видов сырья S_1 , S_2 . Нормы расхода каждого изних на одну единицу изделия, запас сырья на 1 день, цена каждого изделия заданы таблицей. Необходимо найти план выпуска изделий, чтобы доход от реализации всей выпущенной продукции составил p денежных единиц.

Вари-	Вид сырья	Нормы расхода сырья на од ну единицу изделия			Запас сырья	Доход
ант		A	В	C	на 1 день	p
	s_1	1	1	7	38	
1.	s_2	2	3	18	96	514
	цена изделия	6	20	100		

_	s_1	1	2	3	33	
2.	<i>S</i> ₂	3	9	6	75	243
	цена изделия	8	15	150		
	s_1	2	5	7	89	
3.	<i>S</i> ₂	6	3	5	79	145
	цена изделия	5	9	10		
	<i>S</i> ₁	8	4	6	76	
4.	<i>S</i> ₂	7	5	9	95	165
	цена изделия	9	12	15		
_	s_1	4	3	8	97	
5.	<i>S</i> ₂	5	6	3	88	174
	цена изделия	10	12	20		
_	s_1	3	2	4	66	
6.	<i>S</i> ₂	5	1	3	67	282
	цена изделия	15	10	12		
	<i>S</i> ₁	1	1	3	60	
7.	<i>S</i> ₂	2	4	5	122	326
	цена изделия	9	12	10		
	<i>S</i> ₁	4	5	3	134	274
8.	<i>S</i> ₂	2	1	4	73	
	цена изделия	6	8	12		
	s_1	1	2	8	123	
9.	<i>S</i> ₂	2	5	19	292	275
	цена изделия	11	9	9		
1.0	s_1	5	9	8	209	
10.	<i>S</i> ₂	4	7	5	154	274
	цена изделия	8	9	12		
	<i>S</i> ₁	2	4	10	126	
11.	s_2	3	6	5	99	181
	цена изделия	7	9	10		
	s_1	5	2	7	89	
12.	<i>S</i> ₂	3	6	4	71	137
	цена изделия	9	5	9		
13.	s_1	1	2	1	41	
	s_2	3	1	2	67	277
	цена изделия	7	8	6		
	s_1	3	9	11	164	
14.	<i>S</i> ₂	5	8	7	124	178
	цена изделия	20	11	9		

1.5	s_1	1	2	1	59	
15.	s_2	3	1	2	82	384
	цена изделия	10	9	8		

Задание 2. В таблице представлен межотраслевой баланс модели хозяйства. Требуется: a) найти матрицу прямых затрат и коэффициенты прямых затрат; b0) найти вектор конечного продукта $Y^{\mathrm{T}}(y_1, y_2, y_3)$, соответствующий данной модели; b0) найти матрицу полных затрат на обеспечение вектора Y; D2) найти необходимый объем валового выпуска каждой отрасли, если объем конечного продукта второй отрасли увеличить вдвое, а объем конечного продукта первой и третьей отраслей уменьшить вдвое.

Отрасль		Отр	Валовой		
Вариант	производства	I	II	III	выпуск
	I	17	24	14	100
1.	II	12	15	14	100
	III	21	30	24	100
	I	3	13	5	50
2.	II	5	10	4	100
	III	4	20	17	80
	I	4	23	50	120
3.	II	10	15	30	100
	III	13	40	10	100
	I	16	14	24	100
4.	II	30	16	15	100
	III	18	21	12	60
	I	13	7	14	50
5.	II	15	16	17	80
	III	21	8	15	50
	I	15	23	21	100
6.	II	18	13	14	80
	III	21	17	15	100
	I	14	16	30	100
7.	II	34	18	10	80
	III	8	30	15	100
	I	21	15	15	100
8.	II	30	14	16	100
	III	12	17	20	100
	I	5	8	4	30
9.	II	6	9	12	40
	III	7	10	13	50

	I	21	15	30	200
10.	II	30	40	10	200
	III	10	40	15	100
	I	10	13	11	50
11.	II	17	9	8	50
	III	5	14	13	50
	I	6	14	5	50
12.	II	4	7	14	60
	III	15	13	25	80
	I	5	13	12	50
13.	II	11	5	4	50
	III	8	6	7	30
	I	10	13	17	100
14.	II	14	12	4	80
	III	16	6	18	60
15.	I	12	10	12	60
	II	18	14	8	60
	III	9	5	8	50

Лабораторная работа № 2

Собственные векторы и собственные значения линейного оператора. Линейная модель обмена

1. Краткие теоретические сведения

Линейный оператор. Закон f, по которому, каждому вектору \mathbf{x} принадлежащему линейному пространству V ставится в соответствие вектор \mathbf{y} того же пространства называется линейным оператором $\mathbf{y} = f(\mathbf{x})$, задающим отображение пространства V в себя.

Пусть в *n*-мерном линейном пространстве задан линейный оператор $\mathbf{y} = f(\mathbf{x})$. В некотором базисе $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$ заданы координаты вектора \mathbf{x} и его образа $\mathbf{y} = f(\mathbf{x})$

$$\mathbf{x} = x_1 \, \mathbf{e}_1 + x_2 \, \mathbf{e}_2 + \ldots + x_n \, \mathbf{e}_n, \qquad \mathbf{y} = y_1 \, \mathbf{e}_1 + y_2 \, \mathbf{e}_2 + \ldots + y_n \, \mathbf{e}_n,$$

тогда связь между координатами векторов \mathbf{x} и \mathbf{y} выражается формулами

$$y_{1} = a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n},$$

$$y_{2} = a_{21}x_{1} + a_{12}x_{2} + \dots + a_{2n}x_{n},$$

$$\dots \dots \dots$$

$$y_{n} = a_{n1}x_{1} + a_{n2}x_{2} + \dots + a_{nn}x_{n}.$$
(1)

Введем обозначения
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
, $X = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$,

$$Y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$
. Матрица A называется матрицей линейного оператора f .

Формулы (1) можно записать в матричном виде

$$Y = AX. (2)$$

Ненулевой вектор \mathbf{x} линейного пространства называется **соб- ственным вектором** линейного оператора f, если существует такое число λ , что выполняется равенство

$$f(\mathbf{x}) = \lambda \mathbf{x}$$
 или $AX = \lambda X$

Число λ называется *собственным значением* вектора $\mathbf x$ относительно оператора f.

Координаты собственного вектора находится из уравнения

$$(AX - \lambda E)X = 0$$

или из системы

$$(a_{11} - \lambda) x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0,$$

$$a_{21}x_1 + (a_{12} - \lambda) x_2 + \dots + a_{2n}x_n = 0,$$

$$\dots \dots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + (a_{nn} - \lambda) x_n = 0.$$
(3)

Эта система имеет ненулевое решение тогда и только тогда, когда ее определитель равен нулю, т.е.

$$\begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix} = 0.$$
 (4)

Уравнение (4) называется *характеристическим*. Число λ является корнем характеристического уравнения.

Линейная модель обмена. Пусть имеется n стран S_1 , S_2 , ..., S_n , национальный доход каждой из которых равен соответственно x_1 , x_2 , ..., x_n . Обозначим коэффициентами a_{ij} , долю национального дохода, которую страна S_i тратит на покупку товаров у страны S_i . Будем счи-

тать, что весь национальным доход тратится на закупку товаров либо внутри страны, либо на импорт из других стран, т.е.

$$\sum_{j=1}^{n} a_{ij} = 1 \ (j = 1, 2, ..., n).$$
 (5)

Матрица
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 назвается $\underline{\it cmpyкmyphoй мат}$

<u>рицей торговли</u>. В соответствии с (5) сумма элементов любого столбца матрицы A равна 1. Для любой страны S_i (i = 1, 2, ..., n) выручка от внутренней и внешней торговли составит:

$$p_i = a_{i1}x_1 + a_{i2}x_2 + ... + a_{in}x_n$$
.

Для бездифицитной торговли должны выполняться равенства $p_i = x_i$ (i = 1, 2, ..., n). (С экономической точки зрения это понятно, так как все страны не могут одновременно получать прибыль.)

Вводя вектор $\mathbf{x} = (x_1, x_2, ..., x_n)$ <u>национальных доходов стран</u>, получим матричное уравнение

$$AX = X, (6)$$

где вектор-столбец $X = \mathbf{x}^{\mathsf{T}}$. Следовательно, задача свелась к отысканию собственного вектора матрицы A, отвечающего собственному значению $\lambda = 1$.

2. Решение типовых задач

Пример 1. Найти собственные векторы и собственные значения линейного оператора f, заданного матрицей $A = \begin{pmatrix} 1 & 4 \\ 9 & 1 \end{pmatrix}$.

Решение. Найдем собственные значения линейного оператора из уравнения (4)

$$\begin{vmatrix} 1-\lambda & 4 \\ 9 & 1-\lambda \end{vmatrix} = 0$$
, или $\lambda^2 - 2\lambda - 35 = 0$.

Корнями характеристического уравнения являются числа $\lambda_1 = -5, \ \lambda_2 = 7.$

Найдем собственный вектор соответствующий собственному числу $\lambda_1 = -5$ из системы (3)

$$\begin{cases} (1 - (-5))x_1 + 4x_2 = 0, \\ 9x_1 + (1 - (-5))x_2 = 0. \end{cases} \Leftrightarrow \begin{cases} 6x_1 + 4x_2 = 0, \\ 9x_1 + 6x_2 = 0. \end{cases}$$

Решая систему, получим $x_1 = -\frac{2}{3}c$, $x_1 = c$ (c — произвольное действительное число не равное нулю). Таким образом, векторы \mathbf{x} ($-\frac{2}{3}c$, c) являются собственными векторами линейного оператора, соответствующими собственному числу $\lambda_1 = -5$. Например, при c = 1 получим вектор \mathbf{x} ($-\frac{2}{3}$, 1).

Аналогично, находим собственные векторы линейного оператора, соответствующие собственному числу $\lambda = 7$: $\mathbf{x} \ (\frac{2}{3}k, k) \ (k-$ произвольное действительное число не равное нулю).

Пример 2. Структурная матрица торговли трех стран S_1 , S_2 , S_3 имеет вид:

$$A = \begin{pmatrix} 1/ & 1/ & 1/\\ /3 & /4 & /2\\ 1/ & 1/ & 1/\\ /3 & /2 & /2\\ 1/ & 1/ & 0 \end{pmatrix}.$$

Найти соотношение национальных доходов стран для сбалансированной торговли. Найти бюджеты стран при условии, что сумма бюджетов составляет 17289 условных единиц

Решение. Находим собственный вектор x, отвечающий собственному значению $\lambda = 1$, решив уравнение (A - E)X = O. Или систему

$$\begin{cases} (\frac{1}{3} - 1)x_1 + \frac{1}{4}4x_2 + \frac{1}{2}x_3 = 0, \\ \frac{1}{3}x_1 + (\frac{1}{2} - 1)x_2 + \frac{1}{2}x_3 = 0, \\ \frac{1}{3}x_1 + \frac{1}{4}x_2 + (0 - 1)x_3 = 0. \end{cases}$$

Найдем $x_1 = 3/2c$, $x_2 = 2c$, $x_3 = c$, т.е. вектор национальных доходов стран имеет вид x (3/2c, 2c, c). Полученный результат означает, что сбалансированность торговли трех стран достигается при соотношении национальных доходов стран 3/2 : 2 : 1 или 3 :4 :2

Если сумма бюджетов составляет 17289 условных единиц, то бюджеты стран находятся из уравнения

$$3/2c + 2c + c = 17289$$
 или $9/2c = 17289$
Следовательно, $c = 3842, \ x_1 = 5763, \ x_2 = 7684, \ x_3 = 3842.$

Задания для лабораторной работы

Задание 1. В пространстве R^2 линейный оператор f в базисе e_1 , e_2 задан матрицей A. Найти: 1) образ y = f(x) вектора x;

- $\frac{1}{2}$) собственные значения и собственные векторы оператора f.

Вариант 1.	Вариант 2.	Вариант 3.
$A = \begin{pmatrix} 3 & 5 \\ 0 & 2 \end{pmatrix},$	$A = \begin{pmatrix} 1 & 3 \\ 1 & 5 \end{pmatrix},$	$A = \begin{pmatrix} 2 & 1 \\ 2 & 3 \end{pmatrix},$
$\mathbf{x} = 4\mathbf{e}_1 + 2\mathbf{e}_2.$	$\mathbf{x} = 5\mathbf{e}_1 + 2\mathbf{e}_2.$	$\mathbf{x} = 3\mathbf{e}_1 + 4\mathbf{e}_2.$
Вариант 4.	Вариант 5.	Вариант 6.
$A = \begin{pmatrix} 2 & 4 \\ -1 & -3 \end{pmatrix},$	$A = \begin{pmatrix} 2 & 1 \\ 3 & 4 \end{pmatrix},$	$A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix},$
$\mathbf{x} = 3\mathbf{e}_1 - 7\mathbf{e}_2.$	$\mathbf{x} = 2\mathbf{e}_1 + 8\mathbf{e}_2.$	$\mathbf{x} = e_1 - 5e_2.$
Вариант 7.	Вариант 8.	Вариант 9.
$A = \begin{pmatrix} 13 & -3 \\ -3 & 5 \end{pmatrix},$	$A = \begin{pmatrix} 4 & -1 \\ 7 & -4 \end{pmatrix},$	$A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix},$
$\mathbf{x} = 5\mathbf{e}_1 + 3\mathbf{e}_2.$	$\mathbf{x} = -8\mathbf{e}_1 + 5\mathbf{e}_2.$	$\mathbf{x} = 2\mathbf{e}_1 + 6\mathbf{e}_2.$
Вариант 10.	Вариант 11.	Вариант 12.
$A = \begin{pmatrix} 1 & 2 \\ -1 & 4 \end{pmatrix},$	$A = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix},$	$A = \begin{pmatrix} 2 & 5 \\ -1 & -2 \end{pmatrix},$
$\mathbf{x} = 4\mathbf{e}_1 + 9\mathbf{e}_2.$	$\mathbf{x} = -\mathbf{e}_1 + 3\mathbf{e}_2.$	$\mathbf{x} = 6e_1 + 11e_2.$
Вариант 13	Вариант 14	Вариант 15
$A = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix},$	$A = \begin{pmatrix} -3 & -2 \\ 4 & 3 \end{pmatrix},$	$A = \begin{pmatrix} -5 & 2 \\ -6 & 2 \end{pmatrix},$
$\mathbf{x} = 2\mathbf{e}_1 - 5\mathbf{e}_2.$	$\mathbf{x} = 2\mathbf{e}_1 + 7\mathbf{e}_2.$	$\mathbf{x} = 9\mathbf{e}_1 + 4\mathbf{e}_2.$

Задача 2. Осуществляется сбалансированная бездефицитная торговля четырёх стран со структурной матрицей $A=(a_{ij}), i=1,4,$ j=1,4. Найти бюджеты стран при условии, что сумма бюджетов составляет S условных единиц..

Вариант 1.	Вариант 2.	Вариант 3.
(0,3 0,5 0,2 0,3)	(0,4 0,4 0,3 0,1)	(0,2 0,2 0,6 0,3)
0,1 0,2 0,2 0,3	0,1 0,2 0,4 0,4	0,1 0,3 0,2 0,2
$A = \begin{vmatrix} 0.1 & 0.2 & 0.2 & 0.3 \\ 0.2 & 0.2 & 0.4 & 0.1 \end{vmatrix},$	$A = \begin{vmatrix} 0.1 & 0.2 & 0.4 & 0.4 \\ 0.2 & 0.2 & 0.2 & 0.3 \end{vmatrix},$	$A = \begin{vmatrix} 0.1 & 0.3 & 0.2 & 0.2 \\ 0.3 & 0.1 & 0.1 & 0.2 \end{vmatrix},$
0,4 0,1 0,2 0,3	0,3 0,2 0,1 0,2	$\left(0,4\ 0,4\ 0,1\ 0,3\right)$
S = 22204.	S = 16254.	S = 59480.
Вариант 4.	Вариант 5.	Вариант 6.
(0,4 0,1 0,2 0,4)	(0,1 0,2 0,1 0,3)	(0,3 0,3 0,1 0,2)
$A = \begin{vmatrix} 0.2 & 0.1 & 0.2 & 0.1 \\ 0.1 & 0.4 & 0.3 & 0.3 \end{vmatrix},$	$A = \begin{vmatrix} 0.3 & 0.3 & 0.2 & 0.1 \\ 0.4 & 0.3 & 0.4 & 0.3 \end{vmatrix},$	$A = \begin{vmatrix} 0.4 & 0.2 & 0.5 & 0.3 \\ 0.1 & 0.2 & 0.2 & 0.3 \end{vmatrix},$
0,3 0,4 0,3 0,2	$\begin{pmatrix} 0,2 & 0,2 & 0,3 & 0,3 \end{pmatrix}$	$\begin{pmatrix} 0,2 & 0,3 & 0,2 & 0,2 \\ 0,2 & 0,3 & 0,2 & 0,2 \end{pmatrix}$
S = 89110.	S = 49880.	S = 59616.
Вариант 7.	Вариант 8.	Вариант 9.
(0,4 0,1 0,3 0,2)	(0,1 0,2 0,3 0,2)	(0,3 0,2 0,4 0,1)
	0,4 0,1 0,2 0,3	
$A = \begin{vmatrix} 0.2 & 0.4 & 0.1 & 0.2 \\ 0.3 & 0.2 & 0.4 & 0.2 \end{vmatrix},$	$A = \begin{vmatrix} 0.4 & 0.1 & 0.2 & 0.3 \\ 0.2 & 0.2 & 0.3 & 0.2 \end{vmatrix},$	$A = \begin{vmatrix} 0.3 & 0.1 & 0.2 & 0.3 \\ 0.4 & 0.1 & 0.2 & 0.3 \end{vmatrix},$
0,1 0,3 0,2 0,4	0,3 0,5 0,2 0,3	0 0,6 0,2 0,3
S = 50920.	S = 47584.	S = 32504.
Вариант 10.	Вариант 11.	Вариант 12.
(0,2 0,3 0,4 0,2)	(0,3 0,1 0,2 0,3)	(0,4 0,3 0,1 0,1)
0,4 0,2 0,1 0,1	0,4 0,4 0,2 0,2	0,2 0,2 0,3 0,3
$A = \begin{vmatrix} 0.4 & 0.2 & 0.1 & 0.1 \\ 0.3 & 0.1 & 0.3 & 0.4 \end{vmatrix},$	$A = \begin{vmatrix} 0.4 & 0.4 & 0.2 & 0.2 \\ 0.2 & 0.1 & 0.3 & 0.3 \end{vmatrix},$	$A = \begin{vmatrix} 0.2 & 0.2 & 0.3 & 0.3 \\ 0.2 & 0.1 & 0.2 & 0.2 \end{vmatrix},$
0,1 0,4 0,2 0,3	(0,1 0,4 0,3 0,2)	(0,2 0,4 0,4 0,4)
S = 76224.	S = 40680.	S = 40920.
Вариант 13.	Вариант 14.	Вариант 15.
(0,2 0,4 0,2 0,4)	(0,1 0,2 0,4 0,1)	(0,2 0,5 0 0,3)
0,3 0,1 0,3 0,3	0,3 0,5 0,2 0,3	0,3 0,2 0,4 0,1
$ \left \begin{array}{c cccccccccccccccccccccccccccccccccc$	$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$
0,4 0,3 0,1 0,3	$A = \begin{bmatrix} 0.3 & 0.5 & 0.2 & 0.3 \\ 0.2 & 0.2 & 0.2 & 0.3 \\ 0.4 & 0.1 & 0.2 & 0.3 \end{bmatrix},$	(0,3 0,2 0,2 0,5)
S = 63210.	S = 55090.	S = 58590.

Лабораторная работа № 3

Локальный экстремум функции

1. Краткие теоретические сведения

Локальный экстремум функции одной переменной. Пусть функция f(x) определена на интервале (a, b).

Определение. Точка $x_0 \in (a, b)$ называется точкой максимума (минимума) (или точкой локального максимума, локального минимума) функции, если существует такая δ -окрестность точки x_0 , содержащаяся в интервале (a, b), что для всех точек $x \in U_{\delta}(x_0)$ $(x \neq x_0)$ выполняется неравенство $f(x_0) > f(x)$ $(f(x_0) < f(x))$.

Напомним, что δ -окрестностью точки x_0 называется интервал $(x_0 - \delta, x_0 + \delta)$. Обозначение: $U_{\delta}(x_0)$).

Точки максимума и минимума называются точками экстремума функции.

Теорема 1 (необходимое условие экстремума дифференцируемой функции). Если функция f(x) дифференцируема в точке x_0 и имеет в этой точке экстремум, то $f'(x_0) = 0$.

Замечание 1. Функция f(x) может иметь экстремум в точке x_0 , в которой f(x) непрерывна, но не является дифференцируемой .

Точки, в которых функция определена, непрерывна, а производная функции равна нулю или не существует, называются критическими точками функции. Критические точки не всегда являются точками экстремума функции. Для определения их характера необходимо дальнейшее исследование.

Первое достаточное условие экстремума. Пусть точка x_0 является критической точкой функции f(x).

Теорема 2. Пусть f(x) дифференцируема всюду в некоторой δ -окрестности точки x_0 , за исключением, может быть, самой точки x_0 . Если производная функции при переходе через точку x_0 меняет знак, то точка x_0 является точкой экстремума функции. В частности

- если f'(x) > 0 при $x \in (x_0 \delta, 0)$, а f'(x) < 0, при $x \in (0, x_0 + \delta)$, то точка x_0 является точкой максимума функции;
- если f'(x) < 0 при $x \in (x_0 \delta, 0)$, а f'(x) > 0, при $x \in (0, x_0 + \delta)$, то точка x_0 является точкой минимума функции;
- если при переходе через точку x_0 производная не меняет знак, то экстремума в точке x_0 функция не имеет.

Второе достаточное условие экстремума.

Теорема 3. Пусть функция f(x) имеет в точке x_0 вторую производную и $f'(x_0) = 0$. Тогда, если $f''(x_0) > 0$, то точка x_0 является точкой минимума функции. Если $f''(x_0) < 0$, то точка x_0 — точка максимума функции.

Локальный экстремум функции многих переменных.

Определение. Пусть функция $u = f(x_1, ..., x_n)$ определена в некоторой окрестности точки $M_0(x_1^0, ..., x_n^0)$. Точка M_0 называется точкой **локального максимума (минимума)** данной функции, если существует такая окрестность точки M_0 , в которой выполняется неравенство:

$$f(M) < f(M_0) (f(M) > f(M_0)),$$

для всех $M \neq M_0$.

Точки локального максимума и минимума называются **точками** экстремума функции u = f(M).

Теорема 4 (необходимое условие локального экстремума). Пусть функция u = f(M) имеет в точке M_0 локальный экстремум. Тогда, если в этой точке существуют частные производные первого порядка, то все эти частные производные равны нулю.

Точки, в которых все частные производные функции равны нулю, называются *точками возможного экстремума* функции.

Для отыскания этих точек необходимо решить систему уравнений:

Пусть функция $u = f(x_1, ..., x_n)$, имеет в точке M_0 непрерывные производные второго порядка. Тогда второй дифференциал функции

находится по формуле
$$d^2u\Big|_{M_0} = \sum_{i,j=1}^n \frac{\partial^2 u (M_0)}{\partial x_i \partial x_j} dx_i dx_j$$
. Обозначим

$$a_{ij} = \frac{\partial^2 u \ (M_0)}{\partial x_i \partial x_j}$$
. Рассмотрим матрицу $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$. Опреде-

лители
$$\Delta_{\!\!1}=a_{11}, \ \Delta_{\!\!2}=\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \ \Delta_{\!\!3}=\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}, \ldots, \Delta_{\!\!n}=\begin{vmatrix} a_{11} & \ldots & a_{1n} \\ \ldots & \ldots & \ldots \\ a_{n1} & \ldots & a_{nn} \end{vmatrix}$$

называются главными минорами матрицы A.

Теорема 5 (достаточное условие локального экстремума).

Пусть функция $u=f(x_1,\ldots,x_n)$ определена и дважды дифференцируема в некоторой окрестности точки $M_0(x_1^0,\ldots,x_m^0)$ (M_0 — точка возможного экстремума). Пусть все частные производные второго порядка данной функции непрерывны в точке M_0 . Тогда точка M_0 - точка максимума функции, если главные миноры матрицы A чередуют знаки, начиная с первого отрицательного, т.е. $\Delta_1 < 0, \Delta_2 > 0, \Delta_3 < 0, \ldots$ (в этом случае $d^2u(M_0) < 0$); если $\Delta_1 > 0, \Delta_2 > 0, \ldots, \Delta_n > 0$ ($d^2u(M_0) > 0$), то точка M_0 - точка минимума.

Замечание 1. Если главные миноры матрицы A одновременно не равны нулю и не удовлетворяют условиям предыдущей теоремы, то точка M_0 не является точкой экстремума.

3амечание 2. Если некоторые главные миноры матрицы A равны нулю, то нужны дополнительные исследования.

2. Решение типовых задач

Пример 1. Найти точки экстремума функции $y = \frac{\sqrt[3]{x^2}(x-1)}{4x-5}$.

Решение. Область определения функции

$$D(f): x \in \left(-\infty, 1\frac{1}{4}\right) \cup \left(1\frac{1}{4}, \infty\right).$$

Найдем производную функции: $y' = \frac{(8x-5)(x-2)}{3\sqrt[3]{x}(4x-5)^2}$.

Найдем нули производной и точки, в которых производная не существует. Для этого решаем уравнение

$$\frac{(8x-5)(x-2)}{3\sqrt[3]{x}(4x-5)^2}=0.$$

Производная функции равна нулю в точках $x_1=\frac{5}{8}$, $x_2=2$. Производная не существует в точках $x_3=0$ и $x_4=\frac{5}{4}=1\frac{1}{4}$. При этом функция непрерывна в точке $x_2=0$, а в точке $x_3=1\frac{1}{4}$ функция не определена. Следовательно, критическими точками функции являются точки $x_1=\frac{5}{8}$, $x_2=2$ и $x_3=0$.

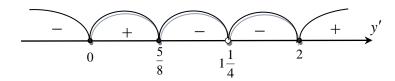


Рис. 1.

Проверим достаточные условия экстремума. Воспользуемся первым достаточным условием. Изобразим координатную ось и нанесём на неё все найденные точки.

Точка $x_4 = 1\frac{1}{4}$ не может быть точкой экстремума функции, так как в этой точке функция не является непрерывной. Точки $x_3 = 0$ и $x_2 = 2$ являются точками минимума функции, так как при переходе через эту точку знак производной меняется с «—» на «+». Точка $x_1 = \frac{5}{8}$ является точкой максимума функции, так как при переходе через эту точку знак производной меняется с «+» на «—».

Ответ. Точки $x_3=0$ и $x_2=2$ — точки минимума функции. Точка $x_1=\frac{5}{8}$ — точка максимума. $f(0)=0,\ f(2)=\frac{\sqrt[3]{4}}{3},\ f\left(\frac{5}{8}\right)=\frac{3}{32\sqrt[3]{2}}$.

Пример 2. Исследовать на экстремум функцию

$$y = 2x^3 - 15x^2 + 36x - 14,$$

воспользовавшись вторым достаточным условием экстремума.

Решение. Область определения функции D(f): $x \in (-\infty, \infty)$.

Находим точки подозрительные на экстремум. Так как $f'(x) = 6x^2 - 30x + 36$, то критические точки: $x_1 = 2$ и $x_2 = 3$.

f''(x)=12x-30. f''(2)=-6<0, значит, x=2 — точка максимума. f''(3)=6>0, значит, точка x=3 — точка минимума.

Ответ. x=2 — точка максимума, x=3 — точка минимума. $f(2)=14, \ f(3)=13.$

Пример 3. Найти точки локального экстремума функции

$$u = 2x^2 - xy + 2xz - y + y^3 + z^2.$$

Решение. 1. Находим точки возможного экстремума функции. Для этого находим частные производные функции и приравниваем их к нулю:

$$\begin{cases} u'_x = 4x - y + 2z = 0, \\ u'_y = -x - 1 + 3y^2 = 0, \\ u'_z = 2x + 2z = 0. \end{cases}$$

Решаем эту систему. Получим точки возможного экстремума функции: $M_1(\frac{1}{3},\frac{2}{3},-\frac{1}{3}),\ M_2(-\frac{1}{4},-\frac{1}{2},\frac{1}{4})$.

2. Проверяем достаточные условия экстремума в этих точках. Найдем частные производные второго порядка в произвольной точке:

$$\frac{\partial^2 u}{\partial x^2} = a_{11} = 4, \quad \frac{\partial^2 u}{\partial x \partial y} = a_{12} = \frac{\partial^2 u}{\partial x \partial y} = a_{21} = -1,$$

$$\frac{\partial^2 u}{\partial y^2} = a_{22} = 6y, \quad \frac{\partial^2 u}{\partial x \partial z} = a_{13} = \frac{\partial^2 u}{\partial z \partial x} = a_{31} = 2,$$

$$\frac{\partial^2 u}{\partial y \partial z} = a_{23} = \frac{\partial^2 u}{\partial z \partial y} = a_{32} = 0, \quad \frac{\partial^2 u}{\partial z^2} = a_{33} = 2.$$

Рассмотрим точку $M_1\left(\frac{1}{3},\frac{2}{3},-\frac{1}{3}\right)$. Найдем значения частных производных функции в точке M_1 :

$$a_{11} = 4$$
, $a_{12} = a_{21} = -1$, $a_{13} = a_{31} = 2$, $a_{22} = 4$, $a_{23} = a_{32} = 0$, $a_{33} = 2$.

Построим матрицу:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} 4 & -1 & 2 \\ -1 & 4 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$

и найдем главные миноры матрицы:

$$\Delta_1 = 4 > 0, \ \Delta_2 = \begin{vmatrix} 4 & -1 \\ -1 & 4 \end{vmatrix} = 16 - 1 = 15 > 0, \ \Delta_3 = \begin{vmatrix} 4 & -1 & 2 \\ -1 & 4 & 0 \\ 2 & 0 & 2 \end{vmatrix} = 14 > 0.$$

Значит точка $M_1(\frac{1}{3},\frac{2}{3},-\frac{1}{3})$ — точка минимума функции.

Находим значение частных производных в точке $M_2(-\frac{1}{4},-\frac{1}{2},\frac{1}{4})$: $a_{11}=4,~a_{12}=-1,~a_{13}=2,~a_{22}=4,~a_{23}=0,~a_{33}=2$. Матрица A имеет вид:

$$A = \begin{pmatrix} 4 & -1 & 2 \\ -1 & -3 & 0 \\ 2 & 0 & 2 \end{pmatrix}.$$

Находим миноры матрицы:

$$\delta_1 = 4 > 0, \quad \delta_2 = \begin{vmatrix} 4 & -1 \\ -1 & -3 \end{vmatrix} = -13 < 0, \quad \delta_3 = \begin{vmatrix} 4 & -1 & 2 \\ -1 & -3 & 0 \\ 2 & 0 & 2 \end{vmatrix} = -14 < 0.$$

Точка M_2 не является точкой экстремума.

Пример 4. Найти точки локального экстремума функции $z = 3x^2y - x^3 - y^4$.

Решение. 1. Находим точки возможного экстремума. Проверяем необходимые условия экстремума.

$$\begin{cases} z'_x = 6xy - 3x^2, \\ z'_y = 3x^2 - 4y^3. \end{cases}$$

Из этой системы находим точки возможного экстремума: $M_1(0,0),\ M_2(6,3).$

2. Проверяем достаточные условия экстремума. Найдем частные производные второго порядка функции.

$$\frac{\partial^2 z}{\partial x^2} = a_{11} = 6y - 6x, \quad \frac{\partial^2 z}{\partial x \partial y} = a_{12} = 6x, \quad \frac{\partial^2 z}{\partial y^2} = a_{22} = -12y^2.$$

Находим значение частных производных в точке M_1 (0, 0):

$$a_{11} = 0$$
, $a_{12} = a_{21} = 0$, $a_{22} = 0$,

следовательно, $\Delta = a_{11}a_{22} - a_{12}^2 = 0$, т.е требуются дополнительные исследования.

Найдем значение функции в точке M_1 : z(0,0)=0. Рассмотрим прямую y=0. На этой прямой $z(x,0)=-x^3$, тогда z(x,0)>0 при x<0, z(x,0)<0 при x>0, т.е. в любой окрестности точки M_1 существуют точки, в которых функция принимает как значения большие, чем $z(M_1)$, так и значения меньшие, чем $z(M_1)$. Следовательно, точка M_1 не является точкой экстремума.

Находим значение частных производных в точке $M_2(6,3)$:

$$a_{11} = -18$$
, $a_{12} = 36$, $a_{22} = -108$,

 $\Delta = a_{11}a_{22} - a_{12}^2 = 648 > 0 \ (a_{11} < 0)$, значит, по теореме 5, точка M_2 — точка максимума.

3. Задания для лабораторной работы

1. Найти точки экстремума функции одной переменной.

Ва- ри- ант	a)	б)	Ва- ри- ант	a)	б)
1	$y = (x^2 - 4)^4$	$y = \frac{x - 1}{x^2 - 2x}$	2	$y = (x^2 - 2x + 3)^2$	$y = x - \sqrt[3]{x^2}$
3	$y = x^3 (10 - 3x^2)$	$y = x^2 - \ln 2x^2$	4	$y = (x^2 - 4)^3$	$y = \frac{x^4}{x^3 - 1}$
5	$y = x^3 - 3x^2$	$y = (x-1)e^{3x-1}$	6	$y = (x^3 - 1)^2$	$y = \frac{x^2 - x - 1}{x^2 - 2x}$
7	$y = x - 2x^4 - 1$	$y = e^{2x - x^2}$	8	$y = x^2 (x^3 - 20)$	$y = \frac{\ln 2x}{\sqrt{x}}$
9	$y = \frac{x^5 + x^3}{5} + 3x$	$y = \frac{(x-3)^2}{4(x-1)}$	10	$y = \frac{2x - 1}{(x - 1)^2}$	$y = (x-5) \cdot \sqrt[3]{x^2}$
11	$y = (3x - 5)^6$	$y = x \ln 3x$	12	$y = x^3 - 3x^2 + 4$	$y = x \ln^2 x$
13	$y = x^2 + \frac{1}{x^2}$	$y = x^2 e^{-x^2}$	14	$y = x^3 - 3x^2 + 4$	$y = x\sqrt{2x+3}$
15	$y = \frac{x^2 + x - 1}{x^2 - 2x + 1}$	$y = x e^{-x}$			

2. Найти точки локального экстремума следующих функций двух переменных:

$$1) z = 3x + y - xy,$$

2)
$$z = x^2 - 4xy - y^2 - 6x - 2y$$
,

3)
$$z=1+15x-2x^2-xy-2y^2$$
, 4) $z=x^2y(2-x-y)$,
5) $z=x^2+2xy-4x+8y$, 6) $z=x^3+6y^2-6xy$,

4)
$$z = x^2y(2-x-y)$$

5)
$$z = x^2 + 2xy - 4x + 8y$$

6)
$$z = x^3 + 6y^2 - 6xy$$

7)
$$z = 3x^3 + 3y^3 - 9xy + 10$$
,

8)
$$z = x^3 + y^3 - 3xy$$
,

9)
$$z = 5x^2 - 3xy + y^2$$
,

10)
$$z = 3x^2 + 3y^2 - 2x - 2y + 2$$
,

11)
$$z = x^2 + 2xy - y^2 - 4x$$
, 12) $z = x^3 + 8y^3 - 6xy + 1$,

12)
$$z = x^3 + 8y^3 - 6xy + 1$$

13)
$$z = x^2 + xy + y^2 + x - y + 1$$
, 14) $z = x^2 - 2y^2 + 4xy - 6x - 1$,

14)
$$z = x^2 - 2y^2 + 4xy - 6x - 1$$
,

15)
$$z = x^2 + y^2 - 2x - 2y + 8$$
,

3. Найти точки локального экстремума следующих функций трех переменных:

1)
$$u = x^2 + 2y^2 + z^2 - 2x + 4y - 6z + 1$$
;

2)
$$f(x) = 2x_1^2 + x_1x_2 + x_2^2 - x_3^2$$
;

3)
$$u = \frac{xyz}{16} - x - y - 2z$$
;

4)
$$u = \frac{256}{x} + \frac{x^2}{y} + \frac{y^2}{z} + z^2$$
.

5)
$$f(x) = 2x_1^2 + 2x_2^2 + x_3^2 - 3x_1x_2 + x_1 + \cos x_3$$
;

6)
$$f(x) = x_1^3 + x_2^2 + 2x_3^2 - x_2x_3 + 2x_1x_3 - x_2$$
;

7)
$$f(x) = 2x_1^2 + x_2^3 + x_3^2 - x_1x_2 + 2x_1x_3 - x_2$$
;

8)
$$u = x^3 + 3xy^2 - 39x - 36y + 26z^2 - 13z$$
;

9)
$$f(x) = (1-x_1)^2 + 10(x_2 - x_1^2) + (3x_3^2 - 6x_3);$$

10)
$$f(x) = -x_1^2 + x_1x_2 - x_2^2 - x_3^2 + 2x_3$$
;

11)
$$f(x) = x_1^3 + x_2x_3 + x_2^2 + x_3^2 - 3x_1 + 6x_2 + 4;$$

12)
$$f(x) = -x_1^2 + 2x_1x_2 - x_2^2 - 4x_3^2$$
;

13)
$$f(x) = x_1^2 - 6x_1x_2 + 2x_2^2 - 3x_3^2 + 8x_1x_3 - 4x_2x_3$$
;

14)
$$f(x) = x_1^2 + 4x_1x_2 + 5x_2^2 + 3x_3^2 - 2x_2x_3 - 2x_1x_3$$
;

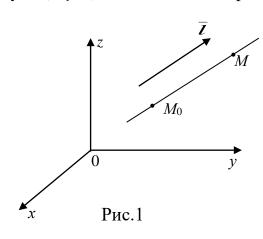
15)
$$f(x) = 2x_1^2 + x_1x_2 + x_2^2 - x_3^2 + 3x_2x_3$$
.

Лабораторная работа № 4

Производная по направлению и градиент функции

1. Краткие теоретические сведения

Производная по направлению и градиент функции трех переменных. Пусть на множестве $\{M\}$ задана функция u = f(x, y, z). Возьмем точку $M_0(x_0, y_0, z_0) \in \{M\}$ и единичный вектор $\bar{l}(\cos\alpha, \cos\beta, \cos\gamma)$, задающий направление в точке M_0 . Выберем точку M(x, y, z) так, чтобы вектор \bar{l} был направляющим вектором прямой



 M_0M (рис 1.). Обозначим через l длину отрезка M_0M , взятую со знаком «+», если вектор $\overline{M_0M}$ сонаправлен с вектором \overline{l} , и взятую со знаком «-», если вектора $\overline{M_0M}$ и \overline{l} противоположно направлены. В этом случае прямую M_0M можно задать параметрически уравнениями

$$\begin{cases} x = x_0 + l\cos\alpha, \\ y = y_0 + l\cos\beta, \\ z = z_0 + l\cos\gamma. \end{cases}$$
 (1)

Тогда функцию u = f(x, y, z) на прямой M_0M можно рассматривать как сложную функцию от одной переменной l:

$$u = f(x, y, z) = f(x_0 + l\cos\alpha, y_0 + l\cos\beta, z_0 + l\cos\gamma).$$

Если эта функция имеет в точке l=0 производную, то эта производная называется производной по направлению \bar{l} от функции u=f(x,y,z) в точке M_0 и обозначается символом $\frac{\partial u}{\partial \bar{l}}$. Эту производную можно найти как производную сложной функции u=f(x,y,z), аргументы которой являются функциями, заданными уравнениями (1) от переменной l:

$$\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} \frac{dx}{dl} + \frac{\partial u}{\partial y} \frac{dy}{dl} + \frac{\partial u}{\partial z} \frac{dz}{dl}.$$

Так как
$$\frac{dx}{dl} = \cos \alpha$$
, $\frac{dy}{dl} = \cos \beta$, $\frac{dz}{dl} = \cos \gamma$, то

$$\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x} \cos \alpha + \frac{\partial u}{\partial y} \cos \beta + \frac{\partial u}{\partial z} \cos \gamma. \tag{2}$$

Производные $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$ в формуле (2) находятся в точке M_0 .

Рассмотрим вектор, обозначаемый символом $\operatorname{grad} u$ и имеющий координаты

$$\left(\frac{\partial u(M_0)}{\partial x}, \frac{\partial u(M_0)}{\partial y}, \frac{\partial u(M_0)}{\partial z}\right), \tag{3}$$

который называется **градиентом функции** u = f(x, y, z) в точке M_0 . Тогда формулу (1) можно записать в виде

$$\frac{\partial u}{\partial l} = \bar{l} \cdot \operatorname{grad} u = \left| \operatorname{grad} u \right| \cdot \left| \bar{l} \right| \cos \varphi = \left| \operatorname{grad} u \right| \cdot \cos \varphi \tag{4}$$

где φ — угол между векторами grad u и \bar{l} . Так как величина $|\operatorname{grad} u| \cdot \cos \varphi$ является наибольшей при $\cos \varphi = 1$ ($\varphi = 0$), то можно сделать вывод, что *производная функции и по направлению* \bar{l} *в точке* M_0 *будет наибольшей*, *если направления векторов* grad u u \bar{l} *совпадают*.

$$\left(\frac{\partial u}{\partial l}\right)_{\text{max}} = \operatorname{grad} u.$$

Говорят, функция u = f(x, y, z) в точке M_0 имеет наибольшую скорость роста в направлении вектора grad u. Величина наибольшего роста функции равна |grad u|.

Поверхностью уровня функции u = f(x, y, z), называется поверхность, которая задается формулой

$$f(x, y, z) = C,$$

где C = const.

Нетрудно убедиться, что градиент функции u = f(x, y, z) в точке M_0 является нормальным вектором к поверхности уровня данной функции, проходящей через точку M_0 .

Производная по направлению и градиент функции двух и *п*-переменных. Пусть у нас задана функция z = f(x, y). Тогда аналогично функции трех переменных вводятся понятия производной по направлению и градиента функции двух переменных.

Для функции z = f(x, y) единичный вектор l, определяющий направление в точке M_0 , имеет координаты $\cos \alpha$, $\sin \alpha$. Поэтому в указанном случае формула (2) имеет вид

$$\frac{\partial z}{\partial l} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial y} \sin \alpha.$$

Градиент функции z=f(x,y) определяется как вектор с координатами $\left(\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right)$

Определение 2. Линией уровня функции z = f(x, y) называется линия на плоскости, задаваемая уравнением f(x, y) = C, где C = const.

Аналогично вводится понятие производной по направлению и градиента функции $u = f(x_1, x_2, ..., x_n)$.

Если функция $u=f(x_1,x_2,...,x_n)$ дифференцируема в точке $M_0,$ то производная $\frac{\partial u}{\partial l}$ функции в точке $M_0\big(x_1^0,x_2^0,...,x_n^0\big)$ по направле-

нию, задаваемому единичным вектором $l(\cos\alpha_1,\cos\alpha_2,...,\cos\alpha_n)$ находится по формуле

$$\frac{\partial u}{\partial l} = \frac{\partial u}{\partial x_1} \cos \alpha_1 + \frac{\partial u}{\partial x_2} \cos \alpha_2 + \dots + \frac{\partial u}{\partial x_n} \cos \alpha_n.$$

Градиентом функции $u=f\left(x_1,x_2,...,x_n\right)$ в точке M_0 называется вектор grad $u\left(\left.\frac{\partial u}{\partial x_1}\right|_{M_0},\left.\frac{\partial u}{\partial x_2}\right|_{M_0},...,\left.\frac{\partial u}{\partial x_n}\right|_{M_0}\right)$.

2. Решение типовых задач

Пример 1. Для функции $u = \frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{4}$ найти

- a) производную функции по направлению вектора $\bar{l}\left(\frac{1}{2};\frac{1}{2};\frac{1}{2}\right)$ в точке $M_0(0,3,1)$,
- δ) величину и направление наибольшего роста функции в точке M_0 ,
 - e) поверхность уровня функции в точке M_0 .

Решение.

a) Найдем координаты единичного вектора \vec{e} сонаправленного с вектором \bar{l} . Так как $\left|\bar{l}\right|=\frac{\sqrt{3}}{2}$, то вектор \vec{e} имеет координаты $\left(\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}}\right)$. Значит, $\cos\alpha=\frac{1}{\sqrt{3}}$, $\cos\beta=\frac{1}{\sqrt{3}}$, $\cos\gamma=\frac{1}{\sqrt{3}}$.

Найдем значение частных производных функции в точке M_0 :

$$\frac{\partial u(M_0)}{\partial x} = \frac{x}{2}\Big|_{M_0} = 0, \quad \frac{\partial u}{\partial y} = \frac{2y}{9}\Big|_{M_0} = \frac{2}{3}, \quad \frac{\partial u}{\partial z} = \frac{z}{2}\Big|_{M_0} = \frac{1}{2}.$$

Тогда по формуле (2)

$$\frac{\partial u}{\partial l} = \frac{2\sqrt{3}}{9} + \frac{\sqrt{3}}{6} = \frac{7\sqrt{13}}{18}.$$

б) Найдем координаты и абсолютную величину вектора grad u. Координаты вектора $\bar{a} = \operatorname{grad} u$ в точке $M_0(0, 3, 1)$ находятся по формуле (3):

$$\overline{a}\left(\frac{\partial u(M_0)}{\partial x}, \frac{\partial u(M_0)}{\partial y}, \frac{\partial u(M_0)}{\partial z}\right) = \overline{a}\left(0, \frac{2}{3}, \frac{1}{2}\right).$$

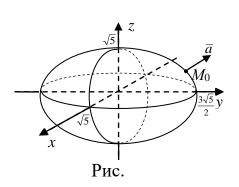
Этот вектор указывает направление наибольшего роста функции в точке M_0 .

Величина наибольшего роста функции равна $|{\rm grad}\ u| = \sqrt{\frac{4}{9} + \frac{1}{4}} = \sqrt{\frac{25}{36}} = \frac{5}{6}.$

в) Поверхности уровня функции задаются уравнением

$$\frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{4} = C$$
,

где C — произвольная постоянная. Найдем значение этой постоянной соответствующей поверхности уровня, проходящей через точку M_0 . Для этого подставим координаты точки в данное уравнение, получим $C=1+\frac{1}{4}=\frac{5}{4}=1,25$. Разделив левую и правую части уравнение по-



верхности на $C = \frac{5}{4}$, получим каноническое уравнение эллипсоида $\frac{x^2}{5} + \frac{y^2}{45/4} + \frac{z^2}{5} = 1 \quad \text{с полуосями} \quad a = \sqrt{5} \; ,$ $b = \frac{3\sqrt{5}}{2} \; , \quad c = \sqrt{5} \; .$

Вектор $\bar{a} = \operatorname{grad} u\left(0, \frac{2}{3}, \frac{1}{2}\right)$ в точке

 $M_0(0, 3, 1)$ перпендикулярен поверхности уровня и указывает направления наибольшего роста функции $u = \frac{x^2}{4} + \frac{y^2}{9} + \frac{z^2}{4}$.

3. Задания для лабораторной работы

- 1. Для функции $u = f(x, y, z) \ (z = f(x, y))$ найти:
- a) производную функции по направлению вектора \bar{l} в точке M_0 ,
- δ) величину и направление наибольшего роста функции в точке M_0 ,
- e) поверхность (линию) уровня функции в точке M_0 .
- z) изобразить линию уровня функции z = f(x, y),

Ва- ри- ант	a)	б)
1.	$u = x^{2}yz + 2xyz^{2} - 2xy + 4yz + 5;$ $\bar{l}(1, 2, 1); M_{0}(1, 0, 2)$	$z = \sin \frac{x^2}{y}; \ \bar{l}(1, 1); M_0(\sqrt{\pi}, 2)$
2.	$u = x^{2} + y^{2} + z^{2} + 6xy - 2y - 2;$ $\bar{l}(1, 1, 1); M_{0}(2, 3, 1)$	$z = \sqrt{\frac{x^2 + y^2}{x}}; \ \bar{l}(1, 2); \ M_0(1, 1)$
3.	$u = x^2 - y^2 - z^2 + 2x + 4yz + 3;$ $\bar{l}(1, 1, 1); M_0(1, 3, 1)$	$z = tg\sqrt{xy}$; $\bar{l}(1,2)$; $M_0(1,\frac{\pi^2}{16})$
4.	$u = \frac{x^2}{2} + \frac{y^2}{6} + 2z^2 + 4xy + 1;$ $\bar{l}(1, 1, 1); M_0(1, 2, 1)$	$z = \frac{1}{\sqrt{y - x^2 + x}}; \bar{l}(2, 1); M_0(1, 4)$
5.	$u = x^{2} + 4y^{2} - z^{2} + 4x - 12z + 7;$ $\bar{l}(1, 1, 1); M_{0}(1, 2, 2)$	$z = \frac{1}{(x - y^2)^3}; \ \bar{l}(1, 1); M_0(8, 4)$
6.	$u = \frac{xz + yz + xy}{y}$ $\bar{l}(1, 1, 1); M_0(1, 2, 1)$	$z = y - 2x^{2} + 2x;$ $\bar{l}(1, 2); M_{0}(2, 7)$
7.	$u = (2x + 4y - 3z)^{4};$ $\bar{l}(1, 1, 1); M_{0}(0, 1, 3)$	$z = \frac{x^2 + 2x}{y}; \bar{l}(1, 1); M_0(2, 7)$
8.	$u = x^2 + y^2 + z^2 + 4x - 4y + 4;$ $\bar{l}(1, 1, 1); M_0(1, 2, 1)$	$z = \frac{1}{\sqrt{(yx)^3}}; \ \bar{l}(2,1); \ M_0(1,3)$
9.	$u = 4x^{2} + 2y^{2} - z + 4x + 2y - 5;$ $\bar{l}(1, 1, 1); M_{0}(1, 1, 1)$	$z = tg \frac{2x}{y}; \ \bar{l}(1, 1); \ M_0(\frac{\pi}{4}, 2)$
10.	$u = x^{2} + 2y^{2} + z^{2} + \frac{1}{x} + \frac{1}{y} + \frac{yz}{x};$ $\bar{l}(1, 1, 1); M_{0}(2, 0, 1)$	$z = e^{2x^2 + y^2};$ $\bar{l}(1, 1); M_0(1, 1)$

11.	$u = xy^2z + x^2 + 2y^2 + z^2 + 4;$ $\bar{l}(1, 1, 1); M_0(2, 0, 1)$	$z = \ln \frac{x}{y}$; $\bar{l}(3,3)$; $M_0(1,e)$
12.	$u = x\sqrt{xyz}$ $\bar{l}(1, 1, 1); M_0(1, 2, 2)$	$z = \sqrt{\frac{2x + y}{y}}; \ \bar{l}(1, 1); \ M_0(1, 1)$
13.	$u = \frac{xz + yz + xy}{y}$ $\bar{l}(1, 1, 1); M_0(1, 2, 1)$	$z = 2^{x^2 + 2y^2 + 1}; \ \bar{l}(0, 1); M_0(1, 1)$
14.	$u = x^2 + 2y^2 + z^2 + \ln xyz;$ $\bar{l}(1, 1, 1); M_0(1, 1, 1)$	$z = \sqrt{x^2 + y^2};$ $\bar{l}(1, 1); M_0(1, 1)$
15.	$u = \sqrt{x^2 + y^2 + z^2}$ $\bar{l}(1, 1, 1); M_0(4, 4, 2)$	z = arcsin (3x + 2y); $\bar{l}(1, 1); M_0(\frac{1}{6}, \frac{1}{4})$

Лабораторная работа № 5 Условии й экстромум функци

Условный экстремум функции при ограничениях-равенствах

1. Краткие теоретические сведения

1. Постановка задачи. Даны дважды непрерывно дифференцируемые *целевая функция* $u = f(x_1, ..., x_n)$ и *функции ограничений* $g_j(M) = g_j(x_1, ..., x_n)$, $(j = \overline{1, m}, m < n)$. Для функций $g_j(x_1, ..., x_n)$ справедливы равенства, называемые *уравнениями связи*

$$g_{j}(M) = g_{j}(x_{1},...,x_{n}) = 0, (j = \overline{1,m}),$$
 (1)

определяющие множество допустимых решений X.

Требуется исследовать функцию $f(x_1,...,x_n)$ на экстремум на множестве $X = \{M \, / \, g_j(M) = 0, \ j = \overline{1,m}\}.$

Если найдется точка $M_0(x_1^0, x_2^0, ..., x_n^0)$, удовлетворяющая системе уравнений (1) и дающая минимум (максимум) функции $u = f(x_1, ..., x_n)$ при всех $M(x_1, ..., x_n) \in X$, то ее называют точкой глобального условного минимума (максимума).

Задача на *покальный условный экстремум* ставится следующим образом: найти точку M_0 , удовлетворяющую ограничениям (1), такую, что при некотором достаточно малом $\varepsilon > 0$, для всех допустимых точек M из ε -окрестности точки M_0 : $\rho(M, M_0) \le \varepsilon$, выполняется

неравенство $f(\mathbf{x}_0) \ge f(\mathbf{x})$ для точки максимума (выполняется неравенство $f(\mathbf{x}_0) \le f(\mathbf{x})$ для точки минимума).

Замечание. $\rho(M, M_0) = \sqrt{(x_1 - x_1^0)^2 + (x_2 - x_2^0)^2 + ... + (x_n - x_n^0)^2}$ — расстояние между точками M и M_0 .

Есть два метода решения данной задачи.

- 2. Метод исключения части переменных. При решении задачи этим методом:
- a) разрешают уравнения связи относительно каких-либо m переменных, например $x_1,...,x_m$;
- б) подставляют эти переменные в функцию f(M)и получают функцию n-m переменных $f(M) = F(x_{m+1},...,x_n)$;
 - в) исследуют на безусловный экстремум новую $F(x_{m+1},...,x_n)$;
- ε) Подставляют координаты полученных точек экстремума в выражения для x_i , $(j=\overline{1,m})$ и находят точки экстремума функции f(M).
- **3. Метод Лагранжа**. Задача об условном экстремуме функции $f(M) = f(x_1, ..., x_n)$ решается с помощью обобщенной функции Лагранжа

$$F(x_1,...,x_n,\lambda_0,\pmb{\lambda})=\lambda_0 f(M)+\lambda_1 g_1(M)+\lambda_2 g_2(M)+\cdots+\lambda_m g_m(M)\,,$$
где λ_i - произвольные числа.

Теорема 1 (необходимые условия экстремума первого порядка).

Пусть M_0 есть точка условного экстремума функции f(M). Тогда найдутся числа λ_0^0 , λ_1^0 ,..., λ_m^0 , не равные одновременно нулю и такие, что выполняются условия:

– условие стационарности обобщенной функции Лагранжа по x_j

$$\frac{\partial F(x_1, ..., x_n, \lambda_0, \lambda)}{\partial x_j} = 0, (j = \overline{1, n});$$

– условие допустимости решения: $g_{i}(x_{1},...,x_{n})=0, (j=\overline{1,m}).$

Замечание 1. Из условия стационарности следует, что число λ_0^0 и вектор Лагранжа $\lambda^0=(\lambda_0^0,\,\ldots,\,\lambda_m^0)$ находятся неоднозначно, причем, если $\lambda_0^0\neq 0$, то всегда можно считать, что $\lambda_0^0>0$.

Замечание 2. Если M_0 точка условного экстремума функции f(M) и для всех векторов Лагранжа, соответствующих этой точке, выполняется $\lambda_0^0 \neq 0$, то точку M_0 называют нормальной точкой условного экстремума, а задачу на условный экстремум – нормальной задачей на условный экстремум.

Замечание **3.** Точки, удовлетворяющие условиям теоремы 1, называют *условно-стационарными*.

Можно показать, что точка M_0 – нормальная точка условного экстремума тогда и только тогда, когда в этой точке выполняются условия регулярности, т.е. линейно независимы градиенты функций

$$g_j(M)$$
 $(j=1,m)$ (векторы $\frac{\partial g_j(M_0)}{\partial x} = \left(\frac{\partial g_j(M_0)}{\partial x_1}, ..., \frac{\partial g_j(M_0)}{\partial x_n}\right) (j=\overline{1,m})$).

Если в точке M_0 выполняются условия регулярности, то можно считать что $\lambda_0^0 = 1$, и вместо обобщенной функции Лагранжа рассматривать классическую функцию Лагранжа

$$L(M,\lambda) = f(M) + \lambda_1 g_1(M) + \lambda_2 g_2(M) + \dots + \lambda_m g_m(M).$$

Теорема 2 (необходимые условия экстремума второго порядка).

Пусть M_0 — регулярная точка условного экстремума функции f(M) и $\lambda^0 = (\lambda_1^0, ..., \lambda_m^0)$ соответствующий ей вектор Лагранжа. Тогда

- 1) если M_0 точка условного минимума, то $d^2L(M_0, \lambda^0) \ge 0$;
- 2) если M_0 точка условного максимума, то $d^2L(M_0, \lambda^0) \leq 0$ для всех дифференциалов независимых переменных dx_1, dx_2, \ldots, dx_n , таких что

$$dg_{j}(M_{0}) = \sum_{i=1}^{n} \frac{\partial g_{j}(M_{0})}{\partial x_{i}} dx_{i} = 0, \quad (j = \overline{1,m}).$$
 (2)

Теорема 3 (достаточные условия экстремума).

Пусть M_0 регулярная условно-стационарная точка, а λ^0 – соответствующий ей вектор Лагранжа.

Если в этой точке $d^2L(M_0, \lambda^0) > 0$ $(d^2L(M_0, \lambda^0) < 0)$ для всех ненулевых $dx_1, dx_2, ..., dx_n$, таких, что выполнено условие (2), то точка M_0 является точкой локального условного минимума (максимума).

4. Алгоритм решения задачи.

Шаг 1. Найти градиенты функций $g_j(M)$ (j=1,m) и проверить их на линейную независимость в области X. Если они всюду линейно независимы, то переходим к шагу 3. Если градиенты функций в некоторых точках линейно зависимы или задача определения линейной зависимости вызывает затруднения, то переходим к шагу 2.

Шаг 2. Составить обобщенную функцию Лагранжа: $F(M, \lambda_0, \lambda) = \lambda_0 f(M) + \lambda_1 g_1(M) + \lambda_2 g_2(M) + \dots + \lambda_m g_m(M)$ и записать необходимые условия первого порядка:

$$\frac{\partial F(M, \lambda_0^0, \lambda^0)}{\partial x_i} = 0, (i = \overline{1, n}); \qquad g_j(M) = 0, (j = \overline{1, m}).$$

Решить полученную систему для случая $\lambda_0 = 0$ и найти координаты точек M и значения постоянных $\lambda_1^0, \lambda_2^0, ..., \lambda_n^0$, удовлетворяющих данным уравнениям.

 $extit{Шаг}$ 3. Положить $\lambda_0=1$ и составить классическую функцию Лагранжа: $L(M,\pmb{\lambda})=f(M)+\sum\limits_{i=1}^m\lambda_jg_j(M).$

Записать необходимые условия первого порядка:

a)
$$\frac{\partial L(M, \lambda^0)}{\partial x_i} = 0$$
, $(i = \overline{1, n})$, δ $g_j(M) = 0$, $(j = \overline{1, m})$.

Решить систему и найти регулярные условно стационарные точки M и значения постоянных $\lambda_1^0, \lambda_2^0, ..., \lambda_n^0$, удовлетворяющих данным уравнениям.

Шаг 4. Для полученных на шаге 3 точек проверить достаточные условия экстремума:

$$(a)$$
 Найти $d^2L(M_0, \lambda^0) = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 L(M_0, \lambda^0)}{\partial x_i \partial x_j} dx_i dx_j$;

б) Продифференцировать уравнения связи:

$$dg_{j}(M_{0}) = \sum_{i=1}^{n} \frac{\partial g_{j}(M_{0})}{\partial x_{i}} dx_{i} = 0 \quad (j = \overline{1,m});$$

- e) Из полученной системы выразить любые m дифференциалов через остальные (n-m) и подставить в $d^2L(M_0, \lambda^0)$;
- ε) Если $d^2L(M_0, \lambda^0) > 0$ при ненулевых $dx_1, dx_2, ..., dx_n$, то в точке M_0 условный локальный минимум, если $d^2L(M_0, \lambda^0) < 0$ при ненулевых $dx_1, dx_2, ..., dx_n$, то в точке M_0 условный локальный максимум. Если достаточные условия не выполняются, следует проверить выполнение необходимых условий второго порядка (теорема 2). Если они выполняются, то требуется дополнительное исследование, а если не выполняются, то в точке M_0 нет условного экстремума.
- *Шаг* 5. Вычислить значения функции в точках условного экстремума, а также в точках, полученных в шаге 2. Наименьшее из этих значений и есть значение глобального минимума, а наибольшее значение глобального минимума. Соответствующие точки M_0 являются точками глобального минимума и максимума соответственно.

2. Решение типовых задач

Пример 1. На эллипсоиде $x^2 + 2y^2 + 4z^2 = 8$ найти точку, наиболее удалённую от точки (0, 0, 3).

Решение. Возьмем произвольную точку M(x, y, z), лежащую на эллипсоиде. Расстояние от точки (0, 0, 3) до точки M(x, y, z) определяется формулой $\rho = \sqrt{x^2 + y^2 + (z - 3)^2}$. Поэтому исходная задача равносильна задаче об условном максимуме функции $u = \rho^2 = x^2 + y^2 + (z - 3)^2$ при условии связи $x^2 + 2y^2 + 4z^2 = 8$.

Найдем решение задачи методом исключения части переменных. Из уравнения связи выражаем x^2 через y и z, получаем

$$x^2 = 8 - 2y^2 - 4z^2. (3)$$

Подставляем полученное значение в целевую функцию и получаем функцию от двух переменных

$$u(y, z) = 8 - 2y^2 - 4z^2 + y^2 + (z - 3)^2 = 17 - y^2 - 3z^2 - 6z$$

которую исследуем на безусловный экстремум.

Находим точки возможного экстремума функции u(y, z), для этого решаем систему уравнений

$$\begin{cases} u'_y = -2y = 0, \\ u'_z = -6z - 6 = 0. \end{cases}$$

Точка $N_0(0, -1)$ – точка возможного экстремума функции u(y, z).

Проверим, выполняются ли для этой точки достаточные условия локального экстремума, для этого находим второй дифференциал функции.

$$d^{2}u = \frac{\partial^{2}u}{\partial y^{2}}dy^{2} + 2\frac{\partial^{2}u}{\partial y\partial z}dydz + \frac{\partial^{2}u}{\partial z^{2}}dz^{2} = -2dy^{2} - 6dz^{2}.$$

Очевидно, что $d^2u = -2dy^2 - 6dz^2 < 0$, для всех dy и dz одновременно не равных нулю, значит точка N_0 (0, -1) — точка локального максимума функции u (y, z).

Подставим координаты точки N_0 в равенство (3), получим значение $x=\pm 2$. Итак, функция $u=\rho^2=x^2+y^2+(z-3)^2$ имеет две точки условного максимума: $M_1(2,0,-1)$ и $M_2(-2,0,-1)$.

Следовательно, точками эллипса, наиболее удаленными от точки (0,0,3), являются точки $M_1(2,0,-1)$ и $M_2(-2,0,-1)$.

Пример 2. Методом Лагранжа найти экстремум функции $u = x + y + z^2$ при условиях связи

$$\begin{cases}
z - x = 1, \\
y - xz = 1.
\end{cases}$$
(4)

Решение. Шаг 1. $g_1(x, y, z) = z - x - 1$, $g_2(x, y, z) = y - xz - 1$. Найдем градиенты этих функций:

grad
$$g_1 = \left(\frac{\partial g_1}{\partial x}, \frac{\partial g_1}{\partial y}, \frac{\partial g_1}{\partial z}\right) = (-1, 0, 1), \text{ grad } g_2 = \left(\frac{\partial g_2}{\partial x}, \frac{\partial g_2}{\partial y}, \frac{\partial g_2}{\partial z}\right) = (-z, 1, -x).$$

Полученные векторы являются линейно независимыми в пространстве \mathbb{R}^3 , следовательно, можно перейти к шагу 3.

Шаг 3. Составим классическую функцию Лагранжа $L = x + y + z^2 + \lambda_1(z - x - 1) + \lambda_2(y - xz - 1)$ и рассмотрим систему уравнений:

$$\begin{cases} L'_{x} = 1 - \lambda_{1} - \lambda_{2}z = 0, \\ L'_{y} = 1 + \lambda_{2} = 0, \\ L'_{z} = 2z + \lambda_{1} - \lambda_{2}x = 0, \\ g_{1} = z - x - 1 = 0, \ g_{2} = y - xz - 1 = 0. \end{cases}$$

Она имеет единственное решение: $x=-1,\ y=1,\ z=0,\ \lambda_1=1,$ $\lambda_2=-1,$ значит, точка M_0 (-1, 1, 0) — единственная точка возможного экстремума функции $u=x+y+z^2$ при условиях связи (2).

Шаг 4. Дифференцируя уравнения связи, приходим к равенствам

$$\begin{cases} dz - dx = 0, \\ dy - xdz - zdx = 0. \end{cases}$$
 или
$$\begin{cases} dz = dx, \\ dy = (x+z)dx. \end{cases}$$

Теперь находим второй дифференциал функции Лагранжа

$$d^{2}L = L_{x^{2}}'' dx^{2} + L_{y^{2}}'' dy^{2} + L_{z^{2}}'' dz^{2} + 2L_{xy}'' dxdy + L_{xz}'' dxdz + 2L_{yz}'' dydz =$$

$$= 2 dz^{2} - 2\lambda_{2} dxdz.$$

Подставляя координаты точки M_0 (-1, 1, 0), значение $\lambda_2 = -1$ и выражения dz = dx, dy = (x+z)dx, dy (M_0) = -dx в d^2L , получаем положительно определённую квадратичную форму от одной переменной dx: $d^2L = 4dx^2 > 0$. Отсюда следует, что функция $u = x + y + z^2$ при условиях связи (4) имеет в точке M_0 условный минимум.

Шаг 5. В точке условного минимума M_0 (-1, 1, 0) значение функции u_{min} = 0.

3. Задания для лабораторной работы

1. Найти точки условного экстремума функции u=f(M) при наличии условий связи $g_{\,j}(M)=0$:

Вариант	u = f(M)	Уравнения связи $g_j(M) = 0$
1.	$u=x_1x_2,$	$3x_1 + x_2 - 6 = 0.$
2.	$u=e^{x_1x_2},$	$x_1 + x_2 - 1 = 0.$
3.	$u = 2x_1^2 + x_2^2,$	$2x_1 + x_2 - 1 = 0.$
4.	$u = x_1 + x_2 + x_3^2 ,$	$-x_1 + x_3 - 1 = 0.$
5.	$u = x_1 x_2 + x_1 x_3 + x_2 x_3,$	$x_1 + x_2 + x_3 - 3 = 0.$
6,	$u = x_1^2 + x_2^2 + x_3^2 + x_4^2,$	$x_1 + x_2 - x_4 - 6 = 0,$ $x_1 + x_3 + x_4 - 9 = 0.$
7.	$u = (x_1 - 3)^2 + (x_2 - 2)^2,$	$x_1 + x_2 - a = 0.$
8.	$u = x_1^2 - x_2^2,$	$x_1 - x_2 - 10 = 0.$
9.	$u = x_1^2 + x_2^2 + 3,$	$x_1^3 + x_2^3 - 1 = 0.$
10.	$u=2x_1+x_2,$	$x_1^3 + x_2^3 - 3x_1x_2 = 0.$
11.	$u=4x_1x_2,$	$x_1^2 + x_2^2 - 9 = 0.$
12.	$u = 2x_1^3 + 2x_2^3 + 3x_1 + 3x_2,$	$x_1^2 + x_2^2 - 1 = 0.$
13.	$u = x_1 + x_2 + x_3,$	$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} - 1 = 0.$
14.	$u=3x_1-x_2,$	$9x_1^3 - x_2^2 = 0.$
15.	$u=x_1-3x_2,$	$(x_1 - 1)^2 + x_2^2 - 1 = 0,$ $(x_1 + 1)^2 + x_2^2 - 1 = 0.$

2. Найти условный экстремум функции u = f(M) при данных уравнениях связи. Решение проиллюстрировать геометрически.

Вари- ант	u = f(M)	Уравнения связи
1.	$u=x_1+x_2,$	$x_1^2 + x_2^2 - 8 = 0.$
2.	$u = x_1^2 + x_2^2,$	$x_1^2 + 2x_2^2 - 8 = 0.$
3.	$u = x_1^2 + x_2^2,$	$x_2^2 - x_1 = 0.$
4.	$u = 2x_1^2 - 4x_1 + x_2^2 - 8x_2 + 3,$	$x_1 + x_2 + 6 = 0.$
5.	$u = x_1 - 2x_2^2 + 4x_2,$	$-3x_1 - 2x_2 = 6.$
6.	$u = -4x_1^2 - 8x_1 + x_2 + 3,$	$-x_1-x_2=2.$
7.	$u = 4x_1^2 + 4x_1 + x_2^2 - 8x_2 + 5,$	$2x_1 - x_2 = 6.$
8.	$u = -8x_1^2 + 4x_1 - x_2^2 + 12x_2 - 7,$	$2x_1 + 3x_2 = -6.$
9.	$u = x_1^2 + x_2^2 + x_3^2,$	$x_1^2 + x_2^2 - x_3 = 0.$
10.	$u = x_1^2 + x_2^2,$	$x_1 + x_2 = 2.$
11.	$u=x_1+x_2,$	$x_1^2 + x_2^2 = 2.$
12.	$u = x_1^2 + x_2^2$,	$(x_1 - 1)^2 + x_2^2 - 4 = 0.$
13.	$u = x_1^2 - x_2^2,$	$x_1^2 + x_2^2 - 1 = 0.$
14.	$u = x_1^2 + x_2^2 + x_3^2,$	$x_1^2 + x_2^2 - x_3 = 0,$ $x_1 + x_2 + x_3 - 4 = 0.$
15.	$u = 0.5((x_1 - 1)^2 + x_2^2),$	$-x_1 + 2x_2^2 = 0.$

ЛИТЕРАТУРА

- 1. Кузнецов, А.В. Высшая математика. Математическое программирование / А.В. Кузнецов, В.А. Сакович, Н.И. Холод. Минск: Вышэйшая школа, 1994. 288 с.
- 2. Минюк, С.А. Математические методы и модели в экономике / С.А. Минюк, Е.А. Ровба, К.К. Кузьмич. Минск: Тетра-Системс, 2002. 432 с.
- 3. Пантелеев, А.В. Методы оптимизации в примерах и задачах / А.В. Пантелеев. Минск: Высшая школа, 2002. 544 с.
- 4. Иванова, Ж.В. Высшая математика: методические рекомендации к практическим занятиям / Ж.В. Иванова, М.Н. Подоксёнов, Т.Л. Сурин. Витебск: ВГУ имени П.М. Машерова, 2021. 50 с.
- 5. Иванова, Ж.В. Математический анализ. Дифференциальное и интегральное исчисление функции многих переменных / Ж.В. Иванова, Т.Л. Сурин, С.В. Шерегов. Витебск: ВГУ имени П.М. Машерова, 2010.-98 с.
- 6. Сурин, Т.Л. Методы оптимизации. Нелинейное программирование / Т.Л. Сурин, Ж.В. Иванова. Витебск: ВГУ имени П.М. Машерова, 2020.-50 с.

Учебное издание

ИВАНОВА Жанна Викторовна **СУРИН** Татьяна Леонидовна

ПРИКЛАДНАЯ МАТЕМАТИКА

Методические рекомендации к лабораторным работам

 Технический редактор
 Г.В. Разбоева

 Компьютерный дизайн
 Л.Р. Жигунова

Подписано в печать 2021. Формат $60x84^{1}/_{16}$. Бумага офсетная. Усл. печ. л. 2,21. Уч.-изд. л. 2,08. Тираж экз. Заказ .

Издатель и полиграфическое исполнение — учреждение образования «Витебский государственный университет имени П.М. Машерова».

Отпечатано на ризографе учреждения образования «Витебский государственный университет имени П.М. Машерова». 210038, г. Витебск, Московский проспект, 33.