МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ «ВИТЕБСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ П.М. МАШЕРОВА»

Математический факультет

Кафедра алгебры и методики преподавания математики

Допущена к защите «З» мая 2015 г. Заведующий кафедрой алгебры и методики преподавания математики Н.Т. Воробьев

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ

ИНЪЕКТОРЫ КОНЕЧНЫХ П-РАЗРЕШИМЫХ ГРУПП

Специальность 1-31 80 03 «Математика»

10 (gecamb) 29,06,2015 (Когор гсена) Ермашкевич Ольги Юрьевны

Научный руководитель: Воробьев Николай Тимофеевич, заведующий кафедрой алгебры и методики преподавания математики, профессор, доктор физикоматематических наук

Реферат

Магистерская диссертация 23 стр., 15 использованных источников.

КЛАСС ФИТТИНГА, МНОЖЕСТВО ФИТТИНГА, ПОЛУЛОКАЛЬНЫЕ КЛАССЫ ФИТТИНГА, *F*-ИНЪЕКТОР, П-РАЗРЕШИМАЯ ГРУППА.

Объект исследования— инъекторы конечных групп.

Цель работы— описание структуры инъекторов частично разрешимых групп для классов и множеств Фиттинга и их характеризация.

Методы исследования — используются методы теории конечных групп, в частности, методы теории классов и множеств Фиттинга.

Полученные результаты и их новизна. В данной работе получены новые научные результаты по характеризации инъекторов для полулокальных классов Фиттинга и исследуются вопросы построения инъекторов для факторгрупп множеств Фиттинга конечной группы. Получены следующие результаты:

Теорема 1. Если $\mathfrak{F}-$ полулокальный класс Фиттинга для некоторой полной \mathcal{X} -постоянной H-функции f с носителем π и G такая группа, что $G/G_{\mathcal{X}}$ разрешима, то подгруппа V является \mathfrak{F} -инъектором группы G тогда и только тогда, когда V/G_f является холловой π' -подгруппой группы G/G_f .

Теорема 2. Пусть G— π -разрешимая группа, где π — непустое множество простых чисел. Следующие утверждения равносильны:

- 1) $s_n H^G$ является π -насыщенным множеством Фиттинга группы G;
- 2) $s_nH^G = Fitset(H)$ μ $Fitset(H) \circ \mathcal{E}_{\pi'} = \{H \leq G: H/H_{Fitset(H)} \in \mathcal{E}_{\pi'}\};$
- 3) Н— π -инъектор группы G.

Сфера применения. Результаты данной работы могут быть использованы при написании курсовых, дипломных проектов; а также могут служить основой для распознавания формальных языков и построения конечных автоматов.

Оглавление

Перечень условных обозначений	3
Введение	4
1 Предварительные сведения	6
2 Критерий %—инъектора	10
3 Множества Фиттинга	13
4 Инъекторы во множествах Фиттинга	15
4.1 Инъекторы факторгрупп	15
4.2 Порождённые множества Фиттинга и инъекторы	18
Заключение	21
Список использованных источников	22

Введение

В теории классов конечных групп известна теорема Гашюца-Фишера-Хартли [1] о том, что в любой конечной разрешимой группе для любого класса Фиттинга у существуют у -инъекторы и любые два из них сопряжены. Напомним, что классом Фиттинга у называют класс групп замкнутый относительно нормальных подгрупп и произведений нормальных у-подгрупп.

Данная теорема была обобщена на случай множеств Фиттинга Π . А. Шеметковым [2], который установил, что если \mathcal{F} — множество Фиттинга π -рарешимой группы G, где π — множество всех простых делителей порядков всех групп из \mathcal{F} , то существуют \mathcal{F} -инъекторы и любые два из них сопряжены в G. Напомним, что множеством Фиттинга \mathcal{F} группы G называют непустое множество подгрупп группы G, которое удовлетворяет следующим условиям:

- 1) если $T \triangleleft \triangleleft S$ и $S \in \mathcal{F}$, то $T \in \mathcal{F}$;
- 2) если $S, T \in \mathcal{F}$ и $S, T \leq ST$, то $ST \in \mathcal{F}$;
- 3) если $S \in \mathcal{F}$ и $x \in G$, тогда $S^x \in \mathcal{F}$.

При этом \mathcal{F} -инъектором группы G называют такую её подгруппу V для которой выполняется следующее условие: $N \cap V$ является \mathcal{F} -максимальной подгруппый группы N, для любой субнормальной подгруппы N группы G. Аналогично определяется \mathcal{F} -инъектор группы G для класса Φ иттинга \mathcal{F} .

Возникает задача о взаимосвязи \mathcal{F} -инъекторов групп и факторгрупп для множества Фиттинга \mathcal{F} $\pi(\mathcal{F})$ -разрешимой либо σ -разрешимой группы G, где $\pi(\mathcal{F})$ — множество всех простых делителей порядков всех групп из \mathcal{F} , а σ — непустое множество простых чисел. Решению этой задачи посвящена данная работа, а также в ней получены новые свойства инъекторов во множествах Фитинга. При этом

инъектором группы G называют такую её подгруппу H которая является \mathcal{F} -инъектором для некоторого множества Φ иттинга \mathcal{F} группы G.

Первый раздел имеет вспомогательный характер. В нём приводятся известные сведения и понятия, которые мы используем в дальнейшем для доказательства основных результатов. Во втором разделе нами установлен критерий $\mathfrak F$ -инъектора для полулокальных классов. В третьем— определяются множества Фиттинга и приводятся их примеры. В четвёртом разделе доказана теорема, описывающая $\mathcal F$ -инъекторы факторгрупп для случая π -разрешимой группы, где π - множество всех простых делителей порядков всех групп из $\mathcal F$. Заключительный раздел посвящён изучению инъекторов.

Основной результат работы— теоремы, приведённые в четвёртой главе, описывающие свойства π -инъекторов.

Основные результаты работы опубликованы в работах [11-15] и апробированы на четырёх международных конференциях. Доказано, что если $\mathfrak F$ — полулокальный класс Фитинга для некоторой полной $\mathcal X$ -постоянной H-функции f с носителем π , и G такая группа, что $G/G_{\mathcal X}$ — разрешима, то подгруппа V является $\mathfrak F$ -инъектором группы G тогда и только тогда, когда V/G_f — холлова π' -подгруппа группы G/G_f .

В работе доказана равносильность следующих свойства для π -разрешимой группы G:

- 1) $s_n H^G$ является π -насыщенным множеством Фиттинга группы G;
- 2) $s_nH^G = Fitset(H)$ и $Fitset(H) \circ \mathcal{E}_{\pi'} = \{H \leq G: H/H_{Fitset(H)} \in \mathcal{E}_{\pi'}\};$
- 3) H— π-инъектор группы G.

Работа выполнялась в рамках задания ГПНИ «Конвергенция».

Список использованных источников

- 1 Fischer, B. Injektoren endlicher auflösbarer Gruppen / B. Fischer, W. Gashüts, B. Hartley// Math. Z., 1967.- Bd. 102.№5, 337-339 s.
- 2 Шеметков, Л.А. О подгруппах π- разрешимых групп / Л.А. Шеметков// Конечные группы. Труды гомельского семинара. Мн.: Наука и техника, 1975.— 207-212 с.
- 3 Монахов В.С. Введение в теорию конечных групп и их классов: учеб. пособие/ В.С. Монахов.- Мн.: Выш. шк., 2006.- С. 207.
- 4 Doerk, K. Finite Soluble Groups / K. Doerk, T. Hawkes. Berlin–New York: Walter de Gruyter, 1992. 891 p.
- 5 Каргаполов М.И., Основы теории групп/ М.И.Каргаполов, Ю.И. Мерзляков, Мн.: Наука, 1978.- C. 263.
- 6 Ведерников В.А. Элементы теории классов групп/ В.А. Ведерников . Смоленск, 1988.- С.96.
- 7 Чунихин С.А. Подгруппы конечных групп/ С.А. Чунихин.- Мн.: Наука и техника, 1964 г..
- 8 Сементовский В.Г., Инъекторы конечных групп., В сб. Исследование нормального и подгруппового строения конечных групп/ В.Г. Сементовский.- Мн.: Наука и техника, 1984 г..
- 9 Воробьёв Н.Т. Инъекторы во множестве Фиттинга конечной группы/ Н.Т. Воробьёв, М.Г. Семёнов// Математические заметки. 2015. Т. 97, № 4.– С. 516–528.
- Семёнов М.Г., Формула инъектора конечной π-разрешимой группы/
 М.Г. Семёнов// Проблемы физики, математики и техники. 2014.—№ 4(21).–
 С. 77–88.