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Intruduction 

This textbook is intended for the organization of independent work of stu-

dents of the second stage of higher education, studying in the specialty "Mathe-

matics and Computer Science". The theory of differentiable manifolds and Rie-

mannian manifolds is presented. We avoid detailed proves. To get a positive 

mark on the exam, students should be sure to compile a glossary of terms for the 

entire subject. It is recommended to use an electronic resource 

https://www.multitran.com/. The presentation of the theoretical material is ac-

companied by simple exercises that must also be performed. 
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Chapter 1. Differential Manifold 

§1. Differentiability 

Recall that  Rn  is a vector space, but we will also consider its elements as 

points. Let  U  and  V  be two domains,  URn, VRm, and let  f:U→V  be 

some function. Since URn, we can consider  f  as a function of  n  variables 

(x1, x2, …, xn).  

Let  xRn. Then  y = f(x)Rm. Hence  y  can be  represented in coordi-

nates as  (y1, y2, …, ym). Accordingly we can write  f(x)= (f1(x), f2(x), …, fm(x)), 

where  f1(x), f2(x), …, fm(x)  are common functions of  n  variables.  

Recall that  Rn  are  Rm  metric spaces. Denote their metrics as  1  and  2.  

Definition 1. We write  x→ xo  if  1(x,xo)→0. We write   

yo= lim
x→xo

 f(x) 

if   

lim
x→xo

 2(f(x),yo) = 0 .  

This is equivalent to lim
x→xo

  fi(x) =  yo
i , for all  i = 1,2,…,m. 

Definition 2. Function  f :U→V  is said to be continuous at a point  xoU, 

if  

lim
x→xo

 f(x)=f(xo).   

Function  f:U→V  is said to be continuous in the domain  if it is continuous at 

every point  xoU. 

 It is easy to prove, that f:U→V  is continuous if and only if all the func-

tions  f1(x),  i = 1,2,…,m  are continuous.  

 Since  Rn  are  Rm  vector spaces, there are operations of the sum and the 

difference of two points. 

Definition 3. f xi(xо)= lim
 x –→ xo

f(x)  – f(xо)

x i – xi
o  ,  i = 1,2,…,m,  if this limit exists 

and is finite. 

It is easy to prove, that  f xi(xо)= (f1xi(x), f2xi(x), …, fmxi(x)), i = 1,2,…,m, i.e. 

we can find partial derivatives coordinatewise. 

Suppose that  f xi(xо)  exists at every point  xoU. Than it is also a func-

tion. Therefore we can calculate its partial derivatives, which are also functions 

and so on.  

Definition 4. We say, that  f(x) belongs to the class  Cn(U)  if it has partial 

and mixed derivatives of the orders 1, 2, …, n  and they are continuous functions. 

We write that  f(x)C(U)  if it has partial and mixed derivatives of any order. 

Each coordinate function can be expanded into a Taylor series at each 

point and in this way the entire function  f(x) can be also expanded into a Taylor 

series at each point.  
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Definition 5. We say that  f(x) is analytic function and write f(x)C(U)  

if its Taylor series at each point converges to the function  f(x) itself. 

All elementary functions of one variable of the class  C(U)  are analytic 

in their domains of definition.  

Example 1. The following function is 

not analytic: 

f(x)=




 e
1

x2

, x0

 0, x = 0
 

All the derivatives and the function itself are 

equal zero at point 0. Therefore its Taylor 

series converges to the null function, and not 

to the function  f(x). You can see its graph 

on figure 1. 

Definition 6. Consider numbers fij(xо) = ( fi ) xj(xо). The matrix composed of 

this numbers is called the Jacobi matrix of the mapping  f  at the point  xо. We 

denote it as  J(xо). 

Definition 7. Mapping  f :U→V  is called diffeomorphism, if  

1)  fC1(U); 

2)  f   is homeomorphism. 

Of course,  f   can be homeomorphism only if  m = n, i.e. we can consider, 

that  U  and  V  are in the same space. In this case  J(x)  is square matrix and we 

can calculate its determinant.  

Definition 8. The determinant  |J(xо)| is called the Jacobian of the map-

ping  f :U→V  at the point  xо. 

It turns out, that  f  is a diffeomorphism if and only if  fC1(U)  and  

|J(x)|0   xU. 

Let  f :U→V, g:V→W  

be two mappings, U,V,WRn, 

xoU,  f(xo) = yoV, 

g(yo) = zoW. Consider the 

composition of the mappings 

h=gf :U→V  

(figure 2). 

Let  J1(xo)  be Jacobi matrix for the mapping  f  at the point xo , J2(yo)  be 

Jacobi matrix for the mapping  g  at point yo , J(xo)  be Jacobi matrix for the 

mapping  h  at the point xo . Then it turns out that  

J(xo) = J1(yo)  J2 (xo)                             (1) 

fig. 1 

x 

y 

1 

0 

W 

V 

U 

 f  g 

 h=g f  
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and therefore  |J (xo) |= |J1(yo) | |J2(xo) |. Consequently, h  is a diffeomorphism 

if and only if   f  and  g  are diffeomorphisms. 

Example 2.  Let coordinates (x1,x2), (y1,y2), (z1,z2), be defined respective-

ly on the domains  U,V,W. Consider mappings  f  and  g, which are defined by 

the formulas  

f :




 
y1= (x2)3,

y2= x1,
  g :





 
z1= y1,

z2= y1y2.
 

Then  

h :




 
z1= (x2)3,

y2= x1(x2)3.
 

Jacobi matrixes are  

J =






0  3(x2)2

1       0
 ,  J1 =







1   0

y2  y1  ,  J2 =






  0     3(x2)2

(x2)3  3x1(x2)2  . 

Exercise 1. Check, that formula (1) is true in this case. 

We see, that   |J |= 0  at all points where  x2= 0, and  |J1 |= 0  at all points 

where  y1= 0. Therefore if we consider the following domains  U  and  V (figure 

3), then restrictions of mappings  f |U  and  g |V  are diffeomorphisms.  

 

 

 

 

 

 

 

 
 

But  f  just maps U  on  V. That is why restriction  h |U  is diffeomorphism and it 

is easy to find out, that  W = h(U) = U. 

Let  c :I→V  be differentia-

ble path, = c(I)  be its image – a 

curve in  Rn, p – be a point on 

the curve and let  p=c(to) (figure 

4). Suppose, that a function  

f :Rn→R  is defined in some 

neighborhood of point  p. If we 

substitute c(t)  in the function  f, 

we get a function of one variable  f(c(t)). We can calculate its derivative  
d

dt
 ( )f(c(t)) , and its value at the point  p:  

d

dt
 ( )f(c(to)) . 

fig. 3 
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Definition 9. The derivative of the function  f  along the path  c  at point  p  

is the value  
d

dt
 ( )f(c(to)) . 

Suppose that  (x1,x2,…,xn)  are coordinates in  Rn. Then equations of the 

path are: 





 

x1= c1(t),

x2= c2(t),

…

xn= cn(t),

                                                      (2) 

According to the rules of derivation 

d

dt
 ( )f(c(t))  =

f

x1 (c
1(t))+

f

x2 (c
2(t))+ …  

f

xn (c
n(t)) .          (3) 

Vector with coordinates  






f

x1,
f

x2, … ,
f

xn   is called the gradient of the function  

f, and we denote it  grad f . Vector with coordinates  ( )(c1(t)), (c2(t)), … , (cn(t))   

is tangent vector to the path  c. It is the vector of the first derivative: c(t). There-

fore formula  (3) can be written in the vector form as follows: 

d

dt
 ( )f(c(t))  = ( )grad f   c(t).                                       (3) 

The principal result is following. The derivative 

of function  f  along the path  c  doesn’t depend 

on path  c  itself: it depends on the vector c(t)  

only. Therefore for all the paths, that have the 

same tangent vector  of the first derivative at 

point  p  (figure 5), have the same derivatives 

along the path for any function.  

Definition 10. We will say that such 

paths are equivalent at point  p. 

This result gives us opportunity to define the directional derivative of the 

given function. 

Definition 11. The derivative of the function  f  in the direction of vector  

Y(y1,y2,…,yn)  at point  p  is the value   

Ypf = gradpf Y =
f

x1 y
1 +

f

x2 y
2 + …  

f

xn y
n,                          (4) 

where all partial derivatives should be calculated at the point  p. 

 We see that each vector at the point  p  defines an operator acting on func-

tions. We will say that each vector acts on functions. It is easy to prove the fol-

lowing properties, using formula (4). 

1)  (Xp + Yp)f = Xpf + Ypf ;  

 2)  Xpf =(Xpf ); 

3)  if  Yp= c(to), then  Ypf = ( )f(c(to)) .  

fig. 5 

p 
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 Let  (E1,E2,…,En)  be a basis in Rn. According to the definition 10  

(E1)pf = gradpf E1=
f

x1 1 +
f

x20 + …  
f

xn 0 =
f

x1 . 

Analogously, (Ei)p f =
f

xi , i = 1, 2, … , n. We will call the derivative in the direc-

tion of a basis vector a basis derivative. Finally we get the following formula: 

Ypf =  y1(E1)pf +  y2(E2)pf + …  yn(En)pf .  

It means the following. Each vector  Y  can be decomposed in a linear combina-

tion of the basis vectors with definite coefficients. Then  Ypf  is the linear combi-

nation of the basis derivatives with the same coefficients. 

 It is important to emphasize, that value  Xpf   depends only on the value of 

the function  f  at some neighborhood of the point  p, i.e. if two functions coin-

cide in little domain around  p, then they have equal directional derivatives.  

§2. Separability axioms 

The concept of a topological space is too general. It acquires its geometric 

content only after the introduction of additional axioms. An arbitrary topological 

space can be very different from a metric one.  Let  (M,)  be a topological space. 

Zero axiom of separability (Axiom of Kolmogorov). Among two points  

x, yM  at least one of them has a neighborhood, that doesn’t contain the sec-

ond point. 

We will call topological spaces satisfying this axiom  To-spaces. 

The first axiom of separability.  For any two different points  x, yM  

there is a neighborhood  U(x)  of point  x, that doesn’t contain  y  and there is a 

neighborhood  V(y)   of point  y, that doesn’t contain  x. 

We will call topological spaces satisfying this axiom  T1-spaces.  

Exercise 2. This axiom is equivalent to the requirement that any point be 

a closed set. Prove this statement. 

The second axiom of separability 

(Hausdorff axiom). For any two different 

points  x, yM  there are a neighborhood  

U(x)  of point  x, and a neighborhood  V(y)   

of point  y, which doesn’t intersect (figure 6).  

We will call topological spaces satisfying  

this axiom  T2-spaces or the Hausdorff spaces. 

Definition 12.  Let  s  and  S  be two collections of sets (families of sets). 

If each set from the collection  S  is union of sets from the collection  s, we say 

that collection  s   additively generates  S  or it is the additive base of  S.   If each 

set from collection  S  is intersection of sets from collection  s, we say that col-

x 
 y 

V(y) 
U(x) 

fig. 6 Ре
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lection  s   multiplicatively generates  S  or that  s   is the multiplicative base of  

S.  

Example 3.  Consider a collection  s  of all infinite intervals  (–, a)  and  

(b, +)  and consider a collection  S  of all intervals on the numerical line  R. 

Each finite interval  (a, b)  from  S  is intersection of two intervals  (–, a)  and  

(b, +). Each infinite interval from  S  is intersection of two equal intervals from  

s. Thus  s  multiplicatively generates  S. Any open set in  R  is union of several  

intervals (may be of infinite number of intervals). A collection of all open sets is 

just the topology    of  R. Therefore  s  additively generates  . 

Definition 13.  Additive base  s  of the topology    is often called the net 

of topological space  (M, ). If collections of sets  so  multiplicatively generates 

the net of topology, then it is called subbase of topology.  

It turns out that collection of sets  s  is a net in  (M, )  if and only if for 

any point  x  and its neighborhood  U(x)  there is  Vs, such that  xVU(x). 

Example 4. The collection of all open squares is 

a net of metric topology in the plane  R2. We can in-

scribe a square  V  in any neighborhood  U(x)  of any 

point  x  in  R2 so that  xVU(x) (figure 7). 

Definition 14.  We say that topological space 

(M, )  has numerable weight if it has a numerable net 

and we say that this space satisfies the second axiom of 

countability.  

It is proved, that any space  Rn (for finite  n) satisfies the second axiom of 

countability. 

§3. Notion of a manifold. Examples 

We have defined the concept of a two-dimensional surface in three-

dimensional space. However, in various branches of mathematics, surfaces of a 

higher dimension are often used, which are located either in some kind of space 

or inside some other surface. In addition, these surfaces are often viewed on 

their own with no enclosing space. 

The simplest example of the need for such an approach. It has already 

been proven that the space we are in is curved. This is not Euclidean space, but a 

three-dimensional surface. It can be viewed as embedded in four-dimensional 

space-time (Minkowski space). But if we are not talking about the theory of 

relativity, but only about the geometric shape of space, this surface should be 

considered "by itself."  

magine that some two-dimensional creature lives in a two-dimensional 

world, where the sum of the angles of any triangle is equal to two straight lines 

and the Pythagorean theorem is fulfilled, as in the plane. This creature can 

measure distances between points. But his world is large enough, and it is still 

fig. 7 

x 

V 
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impossible to measure it entirely. (i.e. our being does not go beyond some small 

area). Can this creature determine if its world is a plane, a cylinder, or a cone? 

No, he can not. From the point of view of internal geometry, small parts of a 

cylinder or cone are arranged in the same way as a piece of a plane.  

A man is in a similar situation. We cannot imagine the geometry of the 

Universe "as a whole". We can only find out that the nearest part of the Universe 

is arranged topologically, like Euclidean space; but this part is not isometric to 

the part of the Euclidean space (i.e. the lengths of the curves do not coincide 

with the lengths of the curves in the Euclidean space).  

 So how can we define the concept of a multidimensional surface that is 

not located in its enclosing space?  

 Definition 15.  Hausdorff topological space  (M,)  with countable base  

is called  m-dimensional topological manifold, if it is locally homeomorphic to 

an open subset of the Euclidean space R
m
. This means that for each point  xM  

there is its neighborhood  Wi  in  M  and a homeomorphism  i : Wi→Ui , where  

Ui  is a domain in the Euclidean space. Pair  (Wi,
 i)  is called a map, and the set 

of all such maps is called atlas of maps of  M. Additionally it is assumed that the 

manifold must have an atlas consisting of a finite or countable number of maps, 

which cover the entire manifold. 

Suppose, that two maps 

(Wi,
 i) and (Wj,

 j) of the 

manifold  M  intersects:  

Wij = WiWj.  

Then the set  Wij  turns out to 

be depicted on two maps at 

once (figure 8):   

Uij=i(Wij), Uji=j(Wij) 

(figure 7). There we have a 

mapping 

ij =
 i

–1j : Uij   –→
 Uji. 

Since both mappings  i  are  j  are homeomorphisms, then  ij is also a home-

omorphism.  

Definition 16.  Homeomorphism  ij : Uij   –→
 Uji  is called a transition 

function from the map (Wi ,
 i)  to the map  (Wj ,

 j).  If this functions for all 

maps are differentiable of the class  Сk, than manifold  M  is called a differentia-

ble manifold of the class  Сk (k = 1, 2, … ,). If this functions for all the maps 

are differentiable of the class  С, than manifold  M  is called an analytic mani-

fold. Manifold of the class  Сo  is called topological manifold. 

fig. 8 
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Thereafter (henceforth, from henceforth) it is always assumed by default 

that the manifold is differentiable manifold of the class  С. 

Definition 17.  We say that a map (V,) is consistent with the atlas  A, if  

A= A  (V,)  is an atlas of the same class of differentiability. An atlas is called 

full if it contains all maps consistent with the atlas  A.  

It is obvious, that full atlas is not countable. 

Examples. 5. A circle (figure 9) is a one-dimensional manifold. At large, 

it is not homeomorphic to an open interval of numerical line, but a neighborhood 

of any it’s point is a simple arc, i.e it is homeomorphic to an interval. 

 

 

 

 

 

 

 

 

 

6.  Any simple surface is two-dimensional manifold. For instance, for the 

sphere S2  (figure 10) an atlas can consist of two maps: (S2\{N}, p1) и (S2\{S}, 

p2), where  p1 is stereographic projection from the north pole  N  on the plane, 

and  p2 is stereographic projection from the south pole  S.   

We will demonstrate later that mapping  p2
–1p1  is a differentiable of the 

class С. Therefore, the sphere is a differentiable manifold of the class С. 

Exercise 3. Show, that a set  M = {pR2 | p20, p1(p1
2 – p2

2) = 0} in R2  is 

not locally Eucledean, but the sets  M \ {0}  and  {pM | p10} are locally Eu-

cledean.  

Let  (V,)A  be a map of a manifold  M. Then the mapping  : V→U 

gives us opportunity to introduce coordinates on the domain  V. We say that the 

point  p  has coordinates  (x1,x2,…,xm)  if its image q =(p)  in the domain  U  

has the same coordinates. 

Let  (W,)A  be another map,  : W→U1, and  q1(y
1,y2,…,ym) =  

=(p)U1 . Then  p  acquires another coordinates  (y1,y2,…,ym). The transition 

function =– 1   is coordinate replacement function in domain  S = VW  

(figure 11) and it is diffeomorphism of the class С. 

We shell note, that    is not defined on  S  itself, nevertheless we call it 

coordinate replacement function just in  S. On the other hand, if there are given a 

map  (V,)A  and a coordinate replacement function  , which is dif-

fig. 9 
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feomorphism of the class  С  and is defined in some part  U of the set  U, then 

we get a new map  (S,),  = ,  S=– 1(U) (figure 11). 

 

 

 

 

 

 

 

 

 

 

 

Example 7.  Let  M = R, V = R,  and let   : R→R  act by the formula  

(t) = t . Then  (V,)  is a map of the manifold and its atlas A may consist of one 

map. Because there are no transition functions, this manifold of class  С.   

Consider one more map 

of the same manifold  (W,), 

W = M, (t) = t3 . (figure 12). 

The transition function  

=– 1  acts by formula  

(t) = t3 . But  is not dif-

feomorphism, because its Ja-

cobian | J |  equal  0  at the 

point  t = 0. It means that the 

new map doesn’t consistent with the atlas  A. However, if we consider an atlas  

A that consists of one new map, the manifold atlas  A  is also of the class  С. 

But the manifold with atlas  {(V,),(W,)} is only topological manifold (of the 

class  Сo). 

Let’s get back to Example 2 on a new level. 

Example 8.  Consider the n-dimensional sphere   

M = Sn = {aRn + 1|(0,a) = 1}={aRn + 1| (a1)2 + (a2)2 ,…,(an + 1)2 = 1}. 

(here  0  is a point “zero vector”). Let  p(0, 0, . . , 1)  be the north pole and 

q(0, 0, . . , – 1)  be the south pole. Consider two domains that cover the whole 

sphere:  V = Sn \ p  and  W = Sn \ q. We are going to do projections on the  n-

dimensional plane, which contains 0 and is perpendicular to the line  pq.  

 

fig. 11 

W 
V 

M 
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 i
–1 

 

 

S 
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Let    be the projection from the north pole and    be the projection 

from the south pole (figure 13). If  a(y1,y2,…,yn + 1), then  (a) = x(x1,x2,…,xn), 

where 

x1=
a1

1 – an + 1 , … , xn=
an

1 – an + 1 .                                        (4) 

Analogously, (a) = y(y1,y2,…,yn), where 

y1=
a1

1+an + 1 , … , yn=
an

1+an + 1 .                                       (5) 

We are going to find formulas of transformation of the coordinates. From 

formulas  (4)  and  (5)  we get 

y1= x1
1 – an + 1

1 + an + 1 , … , yn= xn
1 – an + 1

1 + an + 1 .                                     (6) 

Further on, from  (4)  we get    

(x1)2 + (x2)2 +…+(xn)2 =
(a1)2 + (a2)2 +…+(an)2

(1–an + 1)2  =
1 – (an)2

(1 – an + 1)2 =
1 + an + 1

1 – an + 1 . 

Thus 

y1=  
x1

(x1)2 + (x2)2 +…+(xn)2  , … , yn=
xn

(x1)2 + (x2)2 +…+(xn)2  . 

These formulas are defined on  Rn\0,  and the function   : Rn\0→Rn\0, which is 

defined by these formulas, is of the class  C.  

We should underline, that in the definition of a manifold we does not 

mention the ambient space. We consider a manifold “by itself”. In order to study 

the geometric properties of a manifold, it is necessary to define the notion of a 

curve on a manifold, and the more general notion of a submanifold (manifold, 

p 

 0 

q 

a 

x=(a) 

y=(a) 

k 

l 

fig.13 
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that contains in the given manifold), as well as the notions of a tangent vector 

and a vector field on a manifold.  

Remark. The definition of a manifold does not say that it must be con-

nected. If a manifold is not connected, it can be represented as a union of some 

number (finite or infinite) of connected manifolds. Therefore from henceforth it 

is always assumed by default that the manifold is connected. 

§4. Mappings of manifolds  

Definition 18.  Let  M  and  N  be differential manifolds of the dimension  

m  and  n  respectively. Let  f : M→N  be a mapping defined in some neighbor-

hood of a point  pM . Let  (V,)  and  (W,) be maps of the manifolds defined 

in a neighborhoods of points  p  and  f(p)  respectively. Let  U1 =(V), 

U2 =(W) (figure 14). Let  (x1,x2,…,xm)  and  (y1,y2,…,yn)  be coordinates, that 

are defined by the maps on  V  and  W. 

Definition 19.  Mapping  f
 

= f–1 : V͠ → W͠  is called coordinate repre-

sentation (координатной записью) of mapping  f  in the maps (V,)  and  

(W,)  or coordinate representation of mapping  f  in coordinates  (x1,x2,…,xm)  

and  (y1,y2,…,yn).   

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 20.  Mapping  f  is called differentiable of the class  Ck  

(k=0,1,2,…,)   at the point  pV   if its coordinate representation  f͠  is differ-

entiable of the class  Ck  at the point  (p)U1. We can’t speak about analytical 

mappings because the manifold is supposed to be only of the class  C. 

Suppose that maps  (V,)  and  (W,)  belong to atlases A1  and A2  of 

manifolds  M  and  N.  Points  p  and  f(p)  may belong to several maps from 

these atlases. It is easy to prove, that in this case, the coordinate representation  f͠   

has the same class of differentiability in all these maps.   

fig. 14 
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A function on a manifold is usually called a mapping  f : M→R. We may 

consider  R  as manifold also with atlas, consisting of one identical map.  There-

fore the definition 18 is valid for such kind of mapping also. As a result we get 

the following definition. 

Definition 21.  Let  M  

be a manifold, A  be its atlas,  

pM,  and  f  be a function 

which is defined in some 

neighborhood of point  p. Let  

(V,)A  be a map, which de-

fines coordinates (x1,x2,…,xm) 

and  pV. Then the function    

f
 

=f–1 : V͠ →R 

(figure 15) is called the coordi-

nate representation of mapping  

f  in the map  (V,)  or in coor-

dinates  (x1,x2,…,xm).  

Definition 22.  A function  f  is called differentiable of the class  Ck  in 

some neighborhood of point  p, if its coordinate representation is differentiable 

of the same class in some map from the atlas.  

Definition 23.  Let  M  and  N  be differentiable manifolds. A mapping  

f : M→N  is called the diffeomorphism if it is a homeomorphism and it is differ-

entiable of the class  C. If there exists a diffeomorphism  f : M→N  , then the 

manifolds  M  and  N  are called diffeomorphic.  

If two manifolds are diffeomorphic, then they are equally arranged in 

terms of their differential structure. Using the diffeomorphism we can transfer 

the atlas from  M  to  N  and its maps will be consistent with the atlas of  N. Any 

differential function on   M   generates differential function on  N . 

More exactly, if  (V,)  is a map on  M, then  (f(V),f–1) is a map on  N  

(figure 16). 
 

 

 

 

 

 

 

 

 

 

 
 

fig. 15 
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If  g : N→P  is a differentiable mapping of 

manifold  N  in some manifold  P, then  

g  f : M→P   is also differentiable mapping 

(figure 17). If  g : N→R  is differentiable 

function, then  g  f : M→R   is also differ-

entiable function of the same class. 

Example 9.  Consider  M = R  with usual structure and  N = (–1,1). Then 

f : N→M,   f(t) =
t

1 – t2  

is diffeomorphism. 

Exercise 4.  Let  M = R  

with usual structure and  

N = R  with atlas, that consists 

of one map  (R,), (t) = t3. 

Consider mapping  f : N→M, 

that acts by formula f(t) = t3. 

Find its coordinate represen-

tation (figure 18). 

f
 

(t) = (id f– 1)(t)  

and prove that  f  is diffeomorphism. So, although  M  and  N  have different dif-

ferentiable structures, these manifolds are diffeomorphic. 

 Exercise 5.    Suppose now, that  M  and  N  are the same as above with 

the same atlases. Consider mapping  f : N→M, that acts by formula  f(t) = t. Find 

its coordinate representation. Is   

this mapping it is differentiable 

on the entire manifold? 

Example 10.  Consider 

the sphere  S2  with the atlas 

like in example 4. Consider a 

function  f : S2→R, that acts by 

formula f(a) = a3. We have for-

mulas for mapping  :  

x1 =
a1

1 – a3 ; x
2 =

a2

1 – a3 . 

From this formulas we can de-

rive  

a3 =
1 – (x1)2– (x2)2

 1 + (x1)2+ (x2)2  . 

Thus  f
 

: R2→R (figure 19)  acts by the formula 

fig. 17 

M 

N 

P 

f g 

g f 

fig. 18 
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f
 

(x) =
1 – (x1)2– (x2)2

 1 + (x1)2+ (x2)2  . 

We have infinitely differentiable function. Therefore  f  is also infinitely differ-

entiable. 

Exercise 6.  Find coordinate representation of the function  f(a) = a3. Is 

this function differentiable? 

One more special case of a mapping of a manifold is a curve on a mani-

fold. 

Definition 24. A curve on differentiable manifold  M  is such set  M, 

that for any map  (V,)  the set  
 

=(V)  is a curve in the domain 

V͠=(V)Rn. 

Definition 25. A path 

on manifold  M  is continuous 

mapping  c : I→M, where  I  

is an interval on numerical 

line  R. 

According to the defi-

nition  c  is a path if and only 

if its coordinate representa-

tion 

c
 

=c : I→Rn 

is a path (figure 20);  c  is dif-

ferentiable if and only if  c
 

  is 

differentiable. 

If  (x1,x2,…,xn)  are coordinates defined by some map, than equations of a 

curve    in such coordinates coincide with equations of  
 

  in  Rn.  

Remind that a path  c : I→Rn  is called regular, if  c(t) 0
→

  for all  tI. If 

the path is regular and differentiable of the class  Ck (k=1,2,…,), we say that it 

is smooth of the class  Ck. 

§5. Tangent vectors  

Definition 26.  Let  M  be a differential manifold, pM  and  (V,)  be a 

map defined in the neighborhood  V  of the point  p. Suppose that function  

f : V→R  is defined in the domain  V  and curve    goes through point  p. Let  

c(t)  be a parametrization of the curve and  p = c(to). Then the derivative of func-

tion  f  along the path  c(t)  is the derivative of function  f
 

  along the path  c
 

(t), 

i.e.  

[ f (c(t))] |t = to= [ f
 

(c
 

(t))] |t = to. 

 

fig. 20 
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Let  (x1,x2,…,xn)  be coordinates, that are defined by the map on  V. We 

consider that 

f

xi (x
1,x2,…,xn)p =  

 f
 

xi (x
1,x2,…,xn) (p). 

(we denote coordinates on  V  and coordinates on  V͠  in the same way). 

Let  , 
 

, c(t) and  c
 

(t)  be the same as in the previous paragraph. Let 

X͠= c
 
(t)  be the tangent vector to path  c

 
(t)  at point  (p). We know, that the de-

rivative of the function  f
 

  in the direction of vector  X͠  is equal 

X͠  f
 

= [ f
 

(c
 

(t))] |t = to.                                          (7) 

If  M  were a surface in the Euclidean space, then we could consider tan-

gent vector  X  to path  c(t)  at point  p, and could define the derivative in the di-

rection of vector  X. But our manifold  M  is not embedded anywhere. Therefore 

we can define vector  X  abstractly through its property to differentiate functions. 

Remind, that two functions are called equivalent at point  p  if they coin-

cide in some neighborhood of point  p.  

Definition 27.  The set of all functions which are equivalent to function  f  

are called the germ (росток) of function  f  at point  p.  

Define FpM  the set of all germs of differentiable functions at point  p. In 

other words, FpM  consists of all functions, that are defined in some neighbor-

hood of point  p, taking into account, that we identify equivalent functions. 

By the way, if we consider analytic functions only, then the germ of func-

tion  f  consists only of one function  f. 

Definition 28.  Tangent vector  X  to manifold  M  at point  p  is a map-

ping  X : FpM→R  that has the following properties: 

1. X(af + bg) = aXf + bXg (linearity); 

fig. 21 
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2. X(f g) =  Xf g + f Xg 

a ,bR, f ,gFpM .  

In other words, a tangent vector is a mapping that behaves like differentia-

tion. We can say, that tangent vector  X  acts on functions, but we must add the 

property, that vector acts in the same way on equivalent functions. 

Definition 29.  We say that vector  X  is tangent to the path  c(t)  at point  

p = c(to)  if   Xf = [ f (c(t))] |t = to  for any  fFpM . We write, that  X = c(t). 

Definition 30.  The set of all vectors tangent to all the paths, that goes 

through point  pM  is called the tangent space to the manifold  M  at the point  

p. We denote it  TpM. 

We can define linear operations on tangent vectors from one tangent space 

as follows. We write  Z = X + Y  if  Zf = Xf + Yf  fFpM , and we write  Z =X  

if  Zf =(Xf )   fFpM . 

According to definition 26  [ f (c(t))] |t = to= [ f
 

(c
 

(t))] |t = to  and according 

to formula  (7)  f
 

(c
 

(t))|t = to= X͠ f
 

|(p), where  X͠= c
 
(t). Finally we get 

Xf = [ f (c(t))] |t = to= [ f
 

(c
 

(t))] |t = to= X͠  f
 

.                                 (8) 

for any  fFpM . It means, that there is correspondence between tangent vector X  

to path  c(t)  and tangent vector  X͠  to path  c
 

(t)  at point  (p). Taking into ac-

count properties 1 and 2 after definition 11, we can say that this correspondence 

is linear. 

Definition 31.  Two paths  c(t)  and  d()  that goes through point  pM  

are called eqivalent at point  p, if paths  c
 

(t) =(c(t))  and  d
 

() =(d())  are 

equivalent at point  (p). 

Suppose that  c(t)  and  d()  are equivalent at point  p, p = c(to) = d(o),  

X = c(to) = d (o)). Then 

f (c(t))|t = to= [ f
 

(c
 

(t))] |t = to= X͠  f
 

= [ f
 

(d
 

())] | = o= f (d())| = o. 

We see that equivalent paths on the manifold define the same operator of differ-

entiation, i.e. they define the same tangent vector.  

Let's assume that point  p  has coordinates  (xo
1,xo

2,…,xo
m)   relative to map  

(V,).  It means, that the same coordinates has point  (p). Consider a straight 

line  li  in  Rn, which is defined by parametric equations   

{xi= xo
i; x j= 0, j i . 

It is called coordinate line xi, which goes through point  (p). Then  –1(li)  is 

called coordinate line xi, which goes through point  p. We say, that the set of all 

coordinate lines in domain  V  forms the coordinate net in  V (figure 22). 
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It is easy to prove, that the deriva-

tive of arbitrary function along the coordi-

nate line   xi  is equal to  f/xi. That is 

why the tangent vector to coordinate line  

xi  at point  p  we denote as  /xi or as  Xi. 

So, 

Xi f =








xi  f =
f

xi .            (9) 

Definition 32.  We say that vectors  

(/x1,/x1, … ,/xm)  form the coordi-

nate basis or basis of coordinate vectors 

in the tangent space  TpM.  

Let’s prove, that   

(/x1,/x2, … ,/xm)                                        (10)  

is really a basis. This will prove, that the dimension of  TpM  is equal to the di-

mension of the manifold itself. We must prove, that any vector  XTpM  can be 

expanded in system (10)  and this system is linearly independent.  

According to formula  (8)   Xf = X͠  f
 

. Suppose, that  (1,2,…, m)  are 

coordinates of vector  X͠  . It means, that 

X͠  = 1e1 +2e2 + …+mem, 

where  (e1,e2,…,em)  is a basis in  Rm. According to definition 11  and formula (9) 

X͠  f =
f

x1 
1 +

f

x2 
2 + …  

f

xm m=1 

x1
 f  +2 

x2
 f  + …  m 

xm
 f .  

Thus  

Xf = X͠  f
 

=1 

x1
 f  +2 

x2
 + … +m 

xm
 =









1 

x1
 +2 

x2
 + …  m 

xm
 

 f . 

It means that   

X =1 

x1
 +2 

x2
 + … +m 

xm
 . 

Why system (10)  is linearly independent? Simply because  


xi
 x j=i

j  

(Kronecker delta), i,j = 1,2,…,m. 

Exercise 7.  Give the detailed proof that system (10)  is linearly independ-

ent. 

§6. Fiber bundle  

Remind, that direct or Cartesian product of two sets   X  and  Y  consists of 

all ordered pairs of elements:  XY = {(x,y)| xX, yY}.  

fig. 22 
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Suppose now, that  (X,1)  and  (Y,2)  are topological spaces. We can in-

troduce topology   in  XY   in the following way. Subbase of    consists of sets  

UV  such that  U1, V2. We will submit examples below.    

Definition 33.  Topological space  (X,)  is called a fiber bundle (or a fi-

bration (расслоение)) over base  M  with fiber  F, if  M  and  F  are topological 

spaces and each point  pX  has neighborhood  U͠ 
 , which is homeomorphic to  

UF, where  U  is a domain in  M. Such neighborhood  U͠ 
   is called tubular. 

Definition 34.  A fiber bundle is called trivial, if  X  is homeomorphic to  

MF. 

Examples 11.  The cylinder (infinite 

one) is trivial fibration S1R (figure 23).   

12. Mobius band is fibration over base   

S1  with fiber  I (or  R  if it is infinite).This 

fibration is not trivial (figure 24). 

13. Torus is trivial fibration  S1S1 

(figure 25). 

 

 

 

 

 

 

 

 

Definition 35.  The projection of fiber 

bundle  X  on base  M  is called mapping  

 : X→M, which acts by the following rule. 

For any neighborhood  U͠ 
 = UF  holds   

(U͠ 
 ) = U  and  (p,q) = p  (figure 26).  

Definition 36.  Bundle cut of fiber 

bundle  X  is such mapping of base  M  into  

X   : M→X, that for any  pM  holds  

((p)) = p  (figure 27).  

Bundle cut is kind of immersion or 

embedding of the base into the fibration 

()figure 27. The exact definition of such no-

tions we will study later. 
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Examples 14.  Consider trivial fibration RR={(x,y) |  xR, yR}. Then 

the mapping  (x,y) = x  is the projection,  (x) = (x,x2)  is a bundle cut, because  

((x)) =(x,y) = x . Mapping  (x) = (2x,x2)  is not a bundle cut. 

15.  In figures 23, 24, 25 we can see the result of action of a bundle cut – 

the base embedded in fiber bungle. 

Exercise 8.  Make the drawing for (x) in Example 9. 

§7. Vector fields. Integral curves  

Definition 37.  A set  TM =
pM
  TpM  is called a tangent bundle (каса-

тельное расслоение) of the manifold  M. 

We can introduce a structure of differential manifold on  TpM. Let  A  be 

an atlas on  M. Then atlas  A ¯  consists of such maps  (V ¯, ¯)  that 

1.  (V,)A, (V) = V͠  ; 

2.  V ¯ = TV =
pV
  TpM  (tubular neighborhood, each element of it is a pair  

(p,Y), YTpM);  

3.   ¯ : V ¯ → V͠  RnR2n  according to the following rule. Let point  p  have 

coordinates  (x1,x2,…,xn), and let  Y =1 

x1
 +2 

x2
 + … +m 

xm
   be a tangent 

vector at point  p. Then   ¯(p,Y) = (x1,x2,…,xm,1,2,…,m). 

It is important to emphasize here that tangent planes to a surface in 3-

dimensional space are located in the same space and can intersect. In the theory 

of manifolds  M  is not embedded anywhere. Each tangent space is considered 

separately and they do not intersect. We should note also, that tangent bundle of 

a manifold is not always trivial, i.e. it is not always diffeomorphic to  MRn. 

With our definition of the atlas, the projection will be differentiable mapping 

because in each map it will be defined by the formula   

(x1,x2,…,xm,1,2,…,m)=  (x1,x2,…,xm). 

Definition 38.  Vector field  X  on manifold  M  is a cut   X : M→TM,  of 

tangent bundle  TM. Vector field  X  is called differentiable if  this cut is differ-

entiable mapping. 
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(M) 

X 

M 

 

Ре
по
зи
то
ри
й В
ГУ



24 

 

In other words, we can say that a vector field is a mapping that assigns to 

each point  pM   a vector  XpTM, tangent to the manifold (figure 28). 

At each point  p, we can expand the 

vector  Xp  in the basis  

((/x1)p, (/x2)p, … , (/xm)p): 

Xp=1(/x1)p+2(/x2)p+ … +n(/xm)p. 

Therefore, in whole, on the manifold we can 

expand the vector field in basis vector fields: 

X =1


x1 +2


x2 + … +m 

xm
 = 

i =1

m

i


xi . 

And here  (1,2,…,n)  are functions. 

Proposition 1.  A vector field  X  is differentiable of the class  Ck  if and 

only if all its coordinate functions are differentiable of the class  Ck.   

Proof.  A vector field  X  is defined by the formulas   

X(p) = X(x1,x2,…,xm) = (x1,x2,…,xm,1,2,…,m). 

Therefore this mapping is differentiable of the class  Ck  if and only if  

1,2,…,m  differentiable of the same class. 

A curve  M  is called the integral curve of a vector field  X, if for any 

point  p  the vector  Xp  is tangent vector to   . Integral path of the vector field 

X  is such path  c : I→M, that any  to  the vector   Xc(to)=c(to).  

Theorem 1.  Suppose that a vector field  X  is defined in some domain  U  

on a manifold  M  and  X  is continuous. Then for any point  pU  there is the 

unique path  c : I→U, which is the integral path of field  X  and  c(0) = p. 

Proof.  Let  (V,)  be a map in some neighborhood of point  p, which de-

fines coordinates  (x1,x2,…,xm) ,  V͠  =(V). Let  X = 
i =1

m

i


xi . Consider vector 

field  X͠  = 
i =1

m

iei  on  V͠  . Let  c
 

 : I→ V͠    be an integral path of vector field  X͠    in 

domain  V͠  . Then  X͠  c(to)=c(to)  for any  toI. The last equation can be rewritten 

in coordinates: 





 

a1= (c1),

 . . . . . . 

am= (cm).

 

According to the theorem of existence and uniqueness of the solution of system 

of differential equations this system has a unique solution, if the initial data  

c
 

(0) = (xo
1,xo

2,…,xo
m)   are given. They are coordinates of the initial point  

(p)V͠  . 

M 

fig. 28 
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Consider a path  c =–1c
 

 : I→V  on a manifold (figure 21). Then  c  is 

determined by the same equations in the internal coordinates and  X  is deter-

mined by the same coordinate functions as  X͠  . Thus  c  is the integral path for  

X. 

At last, if domain  U  does not fit in one coordinate neighborhood, we can 

prolong path  c  from one neighborhood to another and so on by the chain of  

neighborhoods.  

Knowing what is the derivative of a function  f  in the direction of a vector  

Xp  is, we can determine the derivative of the function  f  in the direction of a 

vector field  X:  (Xf)p = Xpf  for any point  p  from the domain, where  f  and  X  

are both defined. 

Apart of this there is one more operation for vector fields: Lie bracket or 

commutator   

[X, Y] = XY – YX. 

I.e. we write  Z = [X, Y] ,  if for any function  f  holds  Zf = X(Yf ) – Y(Xf ). Here  

Xf  and  Yf  are again functions and we can consider their derivatives by another 

vector field. 

Properties of this operation. 

1.  [X + Y, Z] = [X , Z] + [Y, Z]; 

2.  [X, Y] =[X , Y] ; 

3.  [Y, X] = – [X , Y] ; 

4.  [X,[Y, Z]] + [Z,[X, Y]] + [Y,[Z, X]] = 0 (Jacobi identity, here  0 – zero vec-

tor field). 

Denote  BM  the set of all differentiable vector fields on a manifold  M. 

Definition 39.  A manifold  M   of the dimension  m  is called paralleliza-

ble if there exist  m  vector fields  X1, X2, … , Xm  on  M, which are linearly inde-

pendent at each point, i.e. they form a basis in tangent space at each point of the 

manifold.  

Examples 16.  The cylinder  S1R1  is a paral-

lelizable manifold. We can choose  X1  along paral-

lels and  X2  along meridians (figure 29). Moebius 

band is not parallelizable. 

17.  S2  and  S2k  (k = 1, 2, … )  are not paral-

lelizable. It is impossible to introduce even one dif-

ferentiable vector field on even-dimensional sphere, 

which has no singular points. S2k – 1  (k = 1, 2, … )  are 

parallelizable. 

Let  /xi  and  /xj  i , j = 1, 2, … , m  be coor-

dinate vector fields on coordinate neighborhood  V  

and  f  be arbitrary function of the class  C2. Then fig. 29 
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2f

xixj =
2f

xjxi . 

Thus 









xi ,


xj  f =


xi 


xj 
 f –



xj 


xi f =
2f

xixj –
2f

xjxi = 0 . 

Since  f  is arbitrary function we get      









xi ,


xj
  = 0  (zero vector field). 

The question naturally arises: whether this implies [X, Y] = 0  for any vector 

fields  X =
i =1

n

i


xi   and  Y =
j =1

n

j


xj ? Let’s check.  

[ ]X, Y  f =









i =1

n

i


xi , 
i =1

n

j


xj  f =









i =1

n

i


xi  









j =1

n

j


xj  f –









j =1

n

j


xj  









i =1

n

i


xi  f =  

= 
i =1

n

i


xi 
 










j =1

n

j 
f

xj  – 
j =1

n

j


xj 
 










i =1

n

i 
f

xi  =  

= 
i =1

n

i
j =1

n
 
j

xi  
 
f

xj +
i =1

n


j =1

n

ij 
2f

 xixj – 
j =1

n

j
i =1

n i

xj  
 
f

xi – 
j =1

n


i =1

n

ji
i =1

n 2f

 xjxi =  

= 
i, j =1

n









i 
j

xi 
 

xj – 
j

i

xj  
 

xi  f .  

Thus 

[ ]X, Y  =








i 
j

xi 
 

xj – 
j

i

xj  
 

xi . 

Definition 40.  If  [ ]X, Y  = 0 , then we say, that vector fields  X  and  Y    

commute. 

If both  X  and  Y  have constant coordinates, then  [ ]X, Y  = 0 .  Constant 

coordinates is sufficient, but not necessary condition for commutation of two 

vector fields. 

§8. Tangent mapping  

Definition 41.  Let  M  and   N  be differential manifolds of dimensions  m  

and  n. Let  f  be differentiable mapping of class  C1, which is defined in the 

neighborhood of point  pM. Let  q = f(p). Let  XTpM  and let  c(t)  be a path, 

that goes through point  p, p = c(0), such that  X=c(to). Let  d(t) = f(c(t))  be a 

path in manifold  N  and  Y=d(to) (figure 30). Consider a mapping  

(f)p : TpM→TqN, which acts by the rule: (f)p X = Y ,  i.e. if  X=c(to), then  

(f)p X =d(to). This mapping is called tangent mapping to  f  at point  pM  or 

differential of mapping  f  at point  p. If we remove connection to a point, we get 

mapping of tangent bundles:  f : TM→TN, which is called tangent mapping to  

f. 
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Suppose now, that coordinates  (x1,x2,…,xm)  are introduced in some 

neighborhood of point  p  and  ((/x1)p, (/x2)p, … , (/xm)p)  be the basis in  

TpM , which determines coordinates  (1,2,…,m). Analogously, let   

(y1,y2,…,yn)  be  coordinates in a neighborhood of point  q  and  (1,2,…,n)  

be coordinates in  TqN  determined by basis  ((/y1)p, (/y2)p, … , (/yn)p).  

As we already know, mapping  f  is determined in coordinates  xi  and  yj  

by the same formulas as its coordinate representation   f
 

 : Rm→Rn. Let  J  Jaco-

bi matrix of mapping  f
 

 . In terms of coordinates  (1,2,…,m)  and  

(1,2,…,n)  f
 

  is linear mapping and determined by matrix  J. 

In details, if 






 

y1 = f1(x
1,x2,…,xm),

     . . . . . . .  

yn = f1(x
1,x2,…,xm),

 

are equations of the mapping  f, then 





 

(f)p



x1 =
f

1

x1



y1 +
f

2

x1



y2 + … +
f

n

x1



yn ,

       . . . . . . . . . . . . 

(f)p



xm =
f

1

xm



y1 +
f

2

xm



y2 + … +
f

n

xm



yn .

 

In brief, 

(f)p








xi  
p
= 

j =1

n

 
f

j

xi



y j , i = 1 , 2 , … , m . 

§9. Submanifold  

Definition 42.  Let  M  and   N  be differential manifolds of dimensions  m  

and  n. Differentiable mapping  f : M→N  is called immersion (погружение) if 

for all  pM  differential of this mapping  (f)p : TpM→TqN  is injective map-

fig. 30 
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ping. Injectiveness of   (f)p   means that matrix of this mapping has rank equal  

m. Of course it is possible only if  mn . 

Definition 43.  An immersion f : M→N  is called is called an embedding 

(вложение), if  f  homeomorphically maps  M   on its image  f(M)N. 

 Example 18.  Let  F  be elementary surface and  r : U→FR3  is its par-

ametrization.  Then according to the definition  r  homeomorphically maps  U  

on  F. But it is not sufficient to call   r   embedding.  

Let  pU, q = f(p)F.  As usual we denote coordinates on  U  as  (u,v)  

and coordinates in  R3  as  (x, y, z). In coordinates we have equation of the sur-

face  x = r1(u,v), y = r2(u,v), z = r3(u,v). 

Matrix of mapping  (r)p : TpU→TqR
3 (figure 31) is  

J =






(r1)u  

 (r2)u   (r3)u

(r1)v  
 (r2)v   (r3)v

. 

Condition  rank J = 2  is equivalent to  

ru
→

 rv
→

 0
→

. Parameterized surface   

r : U→FR3  is called regular just if it 

holds  ru
→

rv
→

 0
→

  for all  p(u,v)U. It 

means that  f  is immersion if and only 

if it is regular parameterized surface. In 

this case it will be even embedding. I.e.  

r  as if embeds domain  U  into  R3  and 

bends it at the same time. 

Example 19.  Let  M = R  and  

M = R2. Consider mapping  

f(t) = (cos t, sint) (figure 32).  

This mapping is immersion 

since its differential has ma-

trix  

J=(–sint, cost). 

Rank J = 1  for any  tR. 

This mapping is not em-

bedding, because  f(M) = S1  

is not homeomorphic to  M.  

For the same reason 

mapping of the plane in  R3 

f(u,v) = (cosu, sinu, v)  (9) 

(figure 33) is immersion, 

but not embedding. 

fig. 31 
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 Exersises 6.  Find Jacobi matrix of mapping  (9) and prove, that its rank 

is equal 2 for all  (u,v)R2.  

7.  Prove, that the mapping  c : R→R3  acting by the formula 

f(t) = (acosu,  asinu, bv), ab0, is embedding. Remember the name of the 

curve that is obtained as a result of this embedding. 

Example 20.  Mapping  

f : R→R2 f(t) = (t2, t3) (figure 

34) has image “semiqubical pa-

rabola”. It is homeomorphism, 

however its Jacobi matrix  

J = (2t, 3t2)  has rank equal zero 

at point   t = 0 . Thus this map-

ping is not immersion. 

For the same rea-

son mapping of the plane 

in  R3 

f(u,v) = (2u, 3u2, v) 

(figure 35) is not immer-

sion. 

 Exersise 8.  Find 

its Jacobi matrix and 

prove, that its rank is 

equal 2 for all   

(u,v)R2.  

f 

fig. 33 
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R 

u 

v 

R 
R2 

f 

fig.34 
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If manifold  M  is contained in manifold  N  we can consider  M  in two 

ways: as itself and as a part of  N (figure 36).  

 

 

 

 

 

 

 

 

 

 

Therefore the following definition makes sense. 

Definition 44.  Let  M  and  N  be differential manifolds. If  M  is part of  

N  and mapping of inclusion  i : M→N  is embedding, then  is called differential 

submanifold in  N. 

This definition allows us to discard such cases as semiqubical parabola 

and the cylinder on it. This manifolds are not differential submanifolds in  R2  

and in   R3  respectively. But if we consider semicubial parabola “by itself”, it is 

arranged as the line  R, and the cylinder on semicubial parabola “by itself” is ar-

ranged as the plane  R2. For a submanifold to be differentiable, it is not enough 

that it is differentiable “by itself”. We need to embed it smoothly in the envelop-

ing (объемлющее) manifold. 

§10. Tensors  

Definition 45.  Tensor of type  (r,s)  (r,s = 0 , 1 , 2 …)  in space  Rm  is pol-

ylinear mapping 

 

 
 

(i.e. T is function of  r  arguments, each of them is a m-vector, and function val-

ue is ordered set of  s  m-vectors) which is linear in each argument: 

T(X1, … , Xi+Yi, … , Xr) = T(X1, … , Xi, … , Xr) + T(X1, … , Yi, … , Xr)         (9) 

T(X1, … ,Xi, … , Xr) =T(X1, … , Xi, … , Xr)                        (10) 

In tensor algebra, it is customary to dispense with the summation sign by 

using indices of two levels: upper and lower ones. For instance, the following 

notation aiei  means  
i =1

m

aiei , and notation  gija
ibj  means 

i, j =1

m

gija
ibj. The value, up 

to which the summation is carried out, is assumed to be known.  

fig. 36 
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In the future we will come across tensors with  r4, s1  only. Therefore 

all the definitions below will be given for tensors of these types only. The set  

RmRm…Rm  zero times is a scalar (a number).  

Definition 46.  Suppose, that a basis  (e1, e2, … , en)  is given in  Rm . Let  T  

be a tensor of type  (3,1). Then we can write  T(ei, ej, ek) = Ti
l
jkel . The values  Ti

l
jk  

are called components of the tensor  T  in the basis  (e1, e2, … , en). If  R  is a ten-

sor of type  (4,0), then  R(ei, ej, ek, el) = Rijkl. 

Components of the tensor gives us possibility to calculate tensor value on 

any vectors. For instance,  

T(X, Y, Z) = T(xiei, yjej, zkek) = xiyjzkT(ei, ej, ek) = xiyjzkTi
l
jkel . 

Analogeously,  

R(X, Y, Z, U) = xiyjzkulR(ei, ej, ek, el) = xiyjzkulRijkl.  

Let  A = (ai
i )  be the matrix of a linear transformation A : Rm→Rm , i.e. 

Aei = ai
jej .  

and let  B = (bl
l ) = A– 1 . Consider be the new basis, which is made of vectors  

Ae1,  Ae2, … , Aen. Then the transformation rules of tensor components ar  

Ti
l
jk= ai 

 i aj 
 j ak 

 k Ti
l
jkbl

l   ai 
 i aj 

 j ak 
 k  

Rijkl= ai 
 i aj 

 j ak 
 k al 

 l Rijkl. 

Definition 47. We say, that  T  is a tensor field on a manifold  M  if at each 

point  pM  Tp  is a tensor determined in  TpM  and (9) and (10) are true for any 

vector fields and any function    on  M. 

§11. Connectivity on manifold or covariant derivation 

Definition 48. Let  X  be a 

vector field on manifold  M  and    

pM. Let c(t)  be integral path of 

the vector field  X, which goes 

through  p  and  p = c(0). Let  

q = c(to). Consider transformation  

to: M→M, which maps each 

point  p  to the point  q  as de-

scribed above. We say, that  to  is 

the local flew of the vector field  X. 

This transformation has the following property:  (to)pXp = Xq, i.e. this 

transformation maps vector field  X  in itself (figure 37). 

In Euclidean space we can easily compare two vectors, which have differ-

ent initial points. We can translate one of them at initial point of the other. We 

can’t do in the same way on a manifold. If vectors are tangent to the manifold at 
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different points, then they are located in different spaces. However it gives us an 

opportunity to perform something like translation and map one tangent space on 

the other.  

Let  pM, r =–to(p) = – c(to). Then  to(r) = p. Let  YrTrM  and   

Yp = (to)rYr. Then we say that  Yp   is obtained from  Yr  by parallel translation 

along vector field  X  or along the path  c(t). 

This operation gives us opportunity to define the derivative of vector field  

Y  along vector field  X: 

LXY |p=lim
t→0

 

Yp – (t)rYr

t
, 

where  r =– t(p) . This derivative is called Lie derivative of the vector field  Y  

along the vector field  X. We accept without proof, that   

LXY=[X ,Y].  

But translation defined in this way is not very well. It turns out that the re-

sult of the translation and Lie derivative depends not only on the value of vector 

field  X  along path  c(t), but on its value in the nearest neighbourhood of the 

path. We can define the translation more correctly, but this method is less con-

venient, then than formal description. 

Definition 49. Let  M  be differential manifold. Linear connectivity or co-

variant derivative on  M  is mapping   : BMBM→BM, written as  Z=XY 

(covariant derivative of vector field  Y  along vector field  X), which has the fol-

lowing properties: 

1.  X(Y1+Y2) =XY1 +XY2; 

2.  X(fY) = Xf + f XY; 

3.  X1+X2Y =X1Y+X2Y; 

4.  fXY= f XY. 

We shell notice, that  LXY  has all the properties, except 4, therefore it 

does not fit this definition. 

Let  Xi =/xi  be coordinate vector fields in some map. Let 

XiXj =i
k
jXk . 

Then functions i
k
j  are called the components of the connectivity in the map. 

Definition 50. Tensor   

T(X,Y) =XY –YX – [X ,Y] 

is called the torsion tensor. We say, that a connectivity has no torsion, if  

T(X,Y)0 . 

Equality  T(X,Y) 0  means that  [X ,Y]XY –YX . 

Suppose, that a connectivity has no torsion. Then for any coordinate vec-

tor fields holds 
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0 = T(Xi,Xj) =XiXj –XjXi – [Xi,Xj]=i
k
jXk –j

k
iXk    

   i
k
jXk =j

k
iXk   i,j = 1,2,…,m. 

Since coordinate vector fields are linearly independent at each point, then 

i
k
j =j

k
i   i,j,k = 1,2,…,m.                                  (11) 

And vice versa condition (11) implies  T(Xi,Xj)0    all the components 

of this tensor are equal zero    T(X,Y)0 . 

Let  T(Xi,Xj) = Ti
k
jXk . Then   

Ti
k
j=i

k
j –j

k
i .                                             (12) 

Definition 51.  Let  M  be a differential manifold, c : I→M  be a differenti-

able path. Let  X = c(t)  be a vector field along  c. Then vector field  Y  is called 

parallel along  c, if    

  XY0 .                                (13) 

Theorem 2.  Let  p = c(to)  and  YoTpM. Then there exists one and only 

one vector field  Y  along  c, which is parallel along  c  and  Yo= Yp. 

In the proof of this theorem, equation 2 is reduced to differential equation 

and theorems on the existence and uniqueness of the solution are used.  

This theorem means, that the 

parallel translation of a vector along 

the path is uniquely defined by the 

connectivity. Specifically, if  

YoTpM, p = c(to)  and we want to 

translate  Yo  to the point  q = c(t1), 

then we construct vector field  Y, 

which is parallel along  c(t)  with ini-

tial condition  Yp= Yo  and then  Yq  is 

the desired result (figure 38). 

Let  Y  be arbitrary vector field 

along  c, Yo= Yp, p = c(to). Denote  Yo
(t)

 

vector obtained by parallel translation 

of vector Yc(t)  to point  p. Then the 

following theorem is true. 

Theorem 3.  XY |p lim
t→0

 

Yo
(t) – Yo

t – to
 . 

So, the covariant derivative is defined by a completely natural formula, 

similar to the definition of the ordinary derivative of a function (figure 39).  

 Let  c(t)  be a piecewise smooth path. Then parallel translation is defined 

as sequential translation along each of the smooth pieces (figure 40).  

p 

q 
Xp Xq 

M 

fig.38 
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p 
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M 
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Definition 52. Let  B  be 

a tensor of the type  (r,s)  on a 

differential manifold  M, 

s = 0,1. Then covariant deriva-

tive of the tensor  B  along a 

vector field  X  is defined as a 

tensor of the type  (r,s)  by the 

following formula: 

(XB)(Y1,…,Yn) =X(B(Y1,…,Yn)) + 
i =1

r

B(Y1,…,XYi,…,Yn)        (14) 

If  s = 1, then  B(Y1,…,Yn)  is a vector field, but if  s = 1, then it will be a 

function. Therefore we must make a reservation (сделать оговорку) that in 

formula  (14) Xf   means  Xf. 

Definition 53. The covariant derivative of tensor  B  of type  (r,s)  is 

called a tensor  B   of the type  (r + 1,s), which  is defined by formula 

B(X,Y1,…,Yn) = (XB)(Y1,…,Yn). 

Definition 54.  A tensor field  B  is said to be parallel on  M  if  B0. 

If  B  has the type  (0,0), then  B  is a function  f  and by  B   we mean  df – dif-

ferential of the function. According to this definition  df  is a tensor of the type  

(1,0)  and 

df(X)=Xf =Xf . 

I.e. the differential of a function assigns to each vector X  the derivative of 

the function in the direction of the vector  X. Condition  df = 0  means that for 

any vector field  X  holds  Xf = 0  and it means  f = const. 

If  B  has the type  (0,1), then it is a vector field  Y  and the condition  

Y =0  means that for any vector field  X  holds  XY =0, i.e.  Y  is parallel along 

each vector field. In general, there are no such fields on an arbitrary manifold, 

but on the flat manifold  Rm  such vector fields are constant fields.  

§12. Geodesic lines. Exponential mapping 

Definition 55. A differentiable path  c  on  a manifold  M  is called geo-

desic, if   

cc= 0.                                                (15) 

i.e. if its tangent vector field  X = c  is parallel along  c. A curve    in the mani-

fold  M  is called geodesic, if it is the image of geodesic path. A regular path  c  

is called pregeodesic, if its image is a geodesic curve. 

Remind, that two paths  c : I→M  and  d : I1→M  are called equivalent, if 

there is a regular change of the parameter   : I1→ I, such that  d = c (t =(), 

p 

q 

M 

fig. 40 
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d() = c(())). Equivalent paths have the same trajectory, but have different pa-

rameters. 

Let  (V,)  be a map on  M, Xi =/xi  be the coordinate vector fields and   

i
k
j    be components of the connectivity on  M. Denote  i

k
j (t) =i

k
j |c(t). Let   

x1 = c1(t) , … , xm = cm(t) 

 be coordinate equations of the path  c. Then 

c(t)=(c1(t))


x1 + … + (cm(t))


xm . 

Further on we will denote differentiation by dot. In classical differential geome-

try the dot usually means differentiation by natural parameter. We have 

c  c
  =ci Xic

j Xj = ci
 Xic

j Xj = ci
 (c

j
 XiXj + (Xic

j )Xj) = ci
 c

j
 i

k
jXk + ((ci Xi)c

j )Xj 

Let’s replace in the second term blind index  j  on  k  and equate to zero:  

(ci
 c

j
 i

k
j + cck )Xk = 0. 

Since vectors are linearly independent,  it holds for any  k:  ci
 c

j
 i

k
j + (cck ) = 0. 

According to the definition, c f =
d

dt
 f(c(t))    cck  = c k . Thus, finally we get the 

equation 

c k  + ci
 c

j
 i

k
j = 0, k = 1,2 , . . , m.                              (16) 

These are equations of geodesic path in coordinates. This is a system of differen-

tial equations of the second order. According to the theory it has unique solu-

tion, if the initial data are given:  ck(0) = xo
k, ck (0) = vk. It means, that there is one 

and only one geodesic path, which satisfies initial data   c(0) = p, c (0) = VTpM. 

Therefore the following theorem is true. 

Theorem 4.  For any point  pM  and for any vector  VTpM  there is 

one and only one geodesic path  c : I→M  outgoing from point  p  in the direc-

tion of vector  V. 

The previous reasoning proves the uniqueness of the geodesic line 

within one coordinate neighborhood  

U. If we want to prolong this path 

further on in coordinate neighbor-

hood  U1, we shell take a point  

q = c(t1)UU1  and the vector  

Y = c (t1); they uniquely determine 

the continuation of the path in the 

next coordinate neighborhood  and 

so on (figure 41). 
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But this reasoning doesn’t mean, that fi-

nally we will get the path which domain of def-

inition is the whole numerical line. For instance, 

semiplane is also a manifold. Geodesic lines on 

it are straight lines. But there are lines, which 

we can’t be prolonged in such way, that their 

domain of definition will be  R (figure 42). 

Definition 56. Linear connectivity on a 

manifold  M  is called full, if each geodesic path 

can be prolonged to the geodesic path, determined on the whole  R. A manifold  

M  with full connectivity is called a full manifold. 

Let  M  be a differential manifold,  pM, XTpM. Let  c : I→M  be a geo-

desic path such that  c(0) = p, and let  q=c(1) . Consider the mapping  

expp : TpM→M  which assigns to each vector  XTpM  a point  qM, according 

to the rule described above. 

Definition 57. Such mapping is called exponential mapping of the mani-

fold  M  at the point  p. 

If the manifold is full, then  expp   is defined on the whole  TpM. If the 

manifold is not full, then it is possible, that  expp (X)  is not defined for some 

vector  X. This mapping may be not injective (i.e. it is possible, that  

expp (X) = expp (Y)  while  XY) and may be not surjective (i.e. it is possible, that 

image of this mapping is not whole  M). We will see some examples later. But if 

we consider neighborhood  V  of zero vector in  TpM, which is small enough, 

then the reduction of  expp  on this neighborhood will be a diffeomorphism. In 

particular it means, that there is a neighborhood W  of a point  p, such that any 

point  qW  can be connected with  p  by the unique geodesic line. And here is 

an explanation why.    

For the system of differential equations (16), we can set the boundary val-

ue problem:  c(0) = p,  c(1) =q , i.e.  ck(0) = xo
k, ck(1) = x1

k, k = 1, 2, … , m. Accord-

ing to the theory of differential equations this problem also has unique solution, 

if  p  and  q  are in sufficiently small neighborhood. However, on the manifold 

as a whole, geodesic line connecting two points 

 may not exist or may not be unique.  

Example 21.  On the sphere  S2  geodesic 

lines are big circles. Two arbitrary points (fig-

ure 43) can be connected by two geodesic lines, 

and diametrically opposite points can be con-

nected by infinite number of geodesic lines. 

Example 22.  On the cylinder  S1R  geo-

desic lines are those lines, that are depicted on 

the surface development as straight lines. These  

fig. 42 
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are circles, ruling lines and helix lines. Two arbitrary point on one circle can be 

connected by two geodesic lines and two arbitrary points, which are not located 

on one circle can be connected by infinite number of geodesic lines. We have 

drawn three of them (figure 44).  
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Chapter 2. Riemannian manifold 

§1. Definition of Riemannian manifold  

Let  M  be a differential manifold. Let’s determine in each tangent space  

TpM, pM  a scalar product of vectors  XY. Let  X =i 

xi , Y =j 

xj . Then 

XY=ij 

xi 


xj = gij
ij. 

Here we denoted 

gij=


xi 


xj , i , j = 1 , 2 , … , m. 

This scalar product is usually denoted in the following way: 

gp(X,Y)   or  X,Yp. 

The function  gp : TpMTpM→R is a tensor of the type  (2,0), defined in vector 

space  TpM  and   gij  are its components. 

Definition 58.  This tensor is called the metric tensor of the manifold  M  at 

the point  p. If we avoid connection to the point, we will get so-called the metric 

tensor field  g  on  M  and its components  gij  will be a functions. Nevertheless it 

is common practice to call this tensor field the metric tensor on  M. 

Definition 59.  A manifold  M  with a metric tensor  g  is called the Rie-

mannian manifold. We denote it  (M,g). 

For brevity, the metric tensor is simply called the metric. 

The metric tensor  g(X,Y)  satisfies the following conditions. 

1.  g(X,Y) = g(Y,X); 

2.  g(X +Y,Z) = g(X,Z) + g(Y,Z); 

3.  g(X,Y) =g(X,Y); 

4.  g(X,X)0 and  g(X,X) = 0     X = 0  

X,Y,ZBM  and  FM. 

Conditions 1 and 2 are included in the definition of a tensor. Condition 1 

is symmetric property and 4 means that the tensor is positively definite. 

The metric tensor allows us to define the length of a vector:   

||Xp|| = Xp,Xpp 

and the angle between two vectors: 

cos(Xp,Yp)= 
Xp,Ypp

||Xp|| ||Yp||
 . 

The angle between two curves is 

the angle between their tangent 

fig. 45 
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vectors at the point of intersection 

(figure 45). 

Let  c(t)  be a differential path on the manifold  M,  c : I→M  and  to,t1I. 

The length of the path  c  from  t = to  to  t = t1  is called the value 

L(to,t1)=

 t1

to

  ||c (t)|| dt.                                       (17) 

If  ||c (t)||1  the path is called normal. In this case formula (17) implies 

L(to,t1)= |t1 – to | .  

Theorem 5.  On each differentiable manifold, we can define the metric 

tensor, i.e. any differentiable manifold can be turned into a Riemannian one.   

Definition 60. Let  M  and  N  be two Riemannian manifolds and  

f : M→N  be differential mapping,  pM, q = f(p)N. Mapping  f  is called iso-

metric at point  p  if 

X,Yp=f(X),f(Y)q   X,YTpM 

(figure 46).Mapping  f  is called isometric (or isometry) if it is isometric at each 

point  pM. 

 

 

 

 

 

 

It is obvious that an isometric mapping preserve the length of a vector, the 

angle between vectors, the length of a curve, i.e. it preserves everything, what 

can be calculated with the help of the metric tensor. In other words, isometric 

mapping preserves the internal geometry of the manifold. 

§2. Riemannian connectivity  

We have defined the connectivity, defined the metric but haven’t defined 

connection between them. Naturally only those connections are of the interest 

that agree with the metric. 

Definition 61. Linear connectivity    on a differential manifold  M  is 

called the Riemannian connectivity, if for any differentiable path  c : I→M  and 

for any vector fields  X, Y, which are parallel along  c, function  X,Y  is con-

stant along  c.  

If a linear connectivity is Riemannian, then parallel translation of vectors 

from  TpM  to  TqN  (p = c(to), q = c(t1))  is isometric mapping of tangent spaces. 

In particular, function  ||X ||  is constant for parallel vector field  X. 

f 

M N 

 p  q  X 

 fY 
TpM 

TqN

M 
 Y 

 fX 

fig. 46 

Ре
по
зи
то
ри
й В
ГУ



40 

 

If  c(t)  is a geodesic path, then  c   is parallel along  c, and it means, that  

||c ||  is constant. If  X  is also parallel along  c(t), then both  ||X ||  and c ,X  are 

constant   cos(c ,X)  is also constant. Therefore a vector field, which is paral-

lel along a geodesic curve    forms constant angle with tangent vectors to    and 

has constant length. This reasoning shows that our definition of Riemannian 

connectivity is natural. 

Theorem 6.  Let  M  be Riemannian manifold and    be a linear connec-

tivity on  M. Then    is Riemannian connectivity, if for any vector fields  X, Y, 

Z  on  M  holds   

ZX,Y= ZX,Y+ X,ZY .                      (18) 

It is full coincidence with the rule of derivation (without proof).  

Definition 62. Among all Riemannian connections on a differentiable 

manifold, stands out one that is torsion-free, and it is called the Levi-Civitta 

connectivity. 

According to the definition the Levi-Civitta connection must satisfy  (18)  

and  T(X,Y) = 0     

XY =YX + [X,Y]                                              (19) 

From formulas (18)  and  (19) we can derive 

ZX,Y=
1

2
{XY,Z+ YZ,X – ZX,Y+ Z,[X,Y]+ Y,[Z,X] – X,[Y,Z]}. (20) 

If we take coordinate vector fields  Xi, Xj, Xk  instead of  X, Y, Z, then taking into 

account   [Xi,Xj] = 0 , we get  

XiXj,Xk=
1

2
{XiXj,Xk+ XjXk,Xi – XkXi,Xj}.                       (20) 

Remind that  XiXj =i
l
jXl , Xi,Xj= gij, and  Xif =

f

xi . Thus (20) is equivalent 

giki
k
j=

1

2
 







gjk

xi  +
gki

xj  –
gij

xk  .                                         (20) 

The following notation is common used:  
gij

xk = gij,k . Using it we obtain 

gkli
l
j=

1

2
 ( )gjk,i + gki,j – gij,k .                                         (20) 

 We know, that  det(gij) > 0 , that is why there is the inverse matrix (gij)
– 1. 

We denote elements of this matrix as  gij. Remind, that  (gij) (gij)
– 1= E  and ele-

ments of unity matrix are Kronecker symbols. Thus  gnkgkl =l
n. Because  l

n  is 

equal to 0 in all cases, except  n = l, when it is equal to 1, then, for instance, in 

the sum  l
nTnv  all terms are equal zero, except  Tlv.  

Let’s multiply (20)  by inverse matrix  (gnk) .  
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l
ni

l
j=

1

2
 gnk( )gjk,i + gki,j – gij,k . 

  i
n
j=

1

2
 gnk( )gjk,i + gki,j – gij,k .                                         (21) 

This formula shows, that the Levi-Civitta connectivity is totally determined by 

the metric. 

Let  M  be a Riemannian manifold with the Levi-Civitta connectivity, 

pM, XTpM. Let  ||X || = a  and let  c : [0,1]→M  be a geodesic path such that  

c(0) = p, c(0) = X. Let  q = c(1) = exppX (figure 47). And at last, let  Xt=c (t)  be 

the tangent vector field along  c. As we have noted above, ||Xt || = a = const. 

Therefore 

L(0,1)= 

 1

0
 ||Xt || dt =

 1

0
adt = a = ||X || .  

 

 

 

 

 

 

 

 

 

So, the length of geodesic path, that connects  p  and  q = exppX  is equal  ||X || .   

Geodesic path with initial data  c(0) = p, c (0) = XTpM  can be defined as  

c(t) = expptX.  For instance,  c(2) = expp2X. We get mapping of the ray  tXTpM  

on the geodesic line  , which is image of the geodesic path  c(t) .  We proved, 

that the length of vector  tX  (it is the same as length of the part of the ray) is 

equal to the length of geodesic segment from  c(0)  to  c(t). Therefore, the expo-

nential map is said to be radially isometric, i.e. it isometrically maps ray  tX  on 

the geodesic line. However, it should be noted that it is true only within some 

domain  VTpM, such that reduction  expp |V  is one-to-one mapping. Outside 

this area it may turn out that  expp0X = p = expptoX  for some  to > 0 , i.e. geodesic 

line can come back to point  p (like on the cylinder, for instance). 

§3. Curvature tensor  

Definition 63. Denote   

R(X,Y)Z =XYZ –YXZ –[X, Y]Z . 

fig. 47 
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This value is a tensor (without proof) of the type (3,1) and it is called the curva-

ture tensor of the connectivity    or  the curvature tensor of the manifold  M  

with the connectivity  . 

When we consider a surface in Euclidean space we can estimate its curva-

ture looking on its form, or we can estimate how quickly the direction of normal 

vector changes while moving along the surface. Our manifold is not embedded 

anywhere. Therefore we need to find a way to measure curvature without going 

beyond the manifold. Imagine the task: to measure the curvature of the space in 

which we live.  

It turns out, that curvature tensor is a measure of the dependence of a par-

allel translation on the path along which this translation is carried out. 

 Let  pM, X,Y,ZTpM and let  (V,)  be a map in the neighborhood of 

point  p, V͠  =(V). Consider a square  Q͠ 
   with a vertex  (p)  and with the side 

equal  t,  which fit in the neighborhood  

V͠  , such that vectors  X  and  Y  are tan-

gent to the sides of curvilinear rectangle 

Q=–1(Q͠ 
 )V (figure 48). 

Let’s perform consequently the 

parallel translation of vector  Z  along 

the sides of  Q. When we come back to  

p, we will get another vector  Z t. It turns 

out, that   

Rp(X,Y)Z = lim
t→0

 
Z t – Z

t2           (21) 

(without proof). 

If  M  is the Riemannian manifold, than we can consider the Riemannian curva-

ture tensor of the type (4,0):  

R(X,Y,Z,U) = R(X,Y)Z,U .                                  (22) 

Theorem 7.  Properties of the curvature tensor and the Riemannian curva-

ture tensor. For any vector fields  X, Y, Z, U  on  M  holds   

1. R(X,Y)Z = – R(Y,X)Z ;  

2. R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0 ;  

3. R(X,Y,Z,U) = – R(X,Y,U,Z) ;  

4. R(X,Y,Z,U) = R(Z,U,X ,Y) .  

Without proof. 

We can define components of this tensors. 

R(Xi,Xj)Xk = Ri
k
jlXl; 

R(Xi,Xj,Xk,Xl) = Rijkl. 

fig. 48 
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Consider a value  k1(X,Y) = ||X || ||Y || – X,Y2 . If  X,Y  are vectors in  Rm, then it 

is equal  |XY |, i.e. it is equal to the area of the parallelogram constructed on 

vectors  X  and  Y. Since  TpM  is also  Rm, then it is true in  TpM  also.  

Definition 64. Let  X, YTpM  be linear independent. The value   

Kp(X,Y) =
R(X,Y,Y,X)

k1(X,Y)
 

is called the sectional curvature of the manifold  M  at the point  p in the direc-

tion of two-dimensional area element spanned on vectors  X  and  Y.  

Let    be two-dimensional space, which is defined by  X  and  Y. If we 

take some other linear independent vectors  Z,U then  Kp(X,Y) =  Kp(Z,U), 

i.e. the sectional curvature depends only on the plane  , where vectors are lo-

cated, but doesn’t depend on vectors themselves. Therefore the notation   

K= Kp(X,Y)  is often used. 

If  M  is a surface in three-dimensional space, then its tangent plane con-

tains only one two-dimensional direction and the sectional curvature in this di-

rection coincide with the Gaussian curvature of the surface. 

If  ||X || = ||Y ||   and  X,Y= 0 , then  k1(X,Y) = 1  and    

Kp(X,Y) = R(X,Y,Y,X)                                     (22) 

Definition 65. A Riemannian manifold is called a constant curvature 

space if  K== const  for all two-dimensional spaces  TpM. A manifold  M  

is called a hyperbolic space, if  < 0 ,  elliptic space, if  > 0  and it is called flat, 

if  0 . 

It turns out, that if  M  is flat, then it is locally Euclidean, i.e. each point  p  

has a neighborhood, which is isometric to a flat domain  V͠  Rm. An example of 

elliptic space is the sphere  S2  and an example of elliptic space is the hyperbolic 

paraboloid. 

Remind, that the trace of a matrix is the sum of all its diagonal elements: 

tr A = a1
1 + a2

2 + … + am
m = 

i=1

m

ai
i . 

A linear operator has different matrixes in different bases. But the trace of the 

matrix is invariant. For a tensor of the kind  (p,1), we can define operation of 

contraction of the tensor and get a tensor of the type  (p–1,0): 

Ti2 … ip

 
=

k=1

m

Tki2 … ip
 k      

. 

If  A  is the matrix of a linear operator  A   in an orthonormal basis  

(e1,e2,…,em), then  ai
j = (Aei) ej .  Therefore  

tr A = 
i=1

m

(Aei) ei= 
i=1

m

(
k=1

m

ai
k ek) ei = 

i=1

m

ai
k gki . 
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Analogously, the trace of a tensor of the type  (p ,1)  is tensor of the type  

(p–1,0):  Tji2 … ip
 k      

 gkj . 

Definition 66. Ricci tensor is a tensor 

R(X,Y) = trace{U→ R(U,X)Y)}. 

If basis  (E1,E2,…,Em)  is orthonormal, then   

R(X,Y) = 
i=1

m

R(Ei,X,Y,Ei) = 
i=1

m

R(Ei,X)Y,Ei .               (23) 

or 

Rij= Rijk
   k 

 

If the basis is not orthonormal, then 

Rij= 
k=1

m

Rijk
   l  gkl. 

According to the properties of the curvature tensor 

R(Ei,X,Y,Ei) = R(Y,Ei,Ei,Xi) = – ( –R(Ei,Y,X,Ei))    

   R(X,Y) = R(Y,X) ,  

i.e. the Ricci tensor is symmetric. 

Definition 67. Value   

rp(X) =
Rp(X,X)

||X ||2
. 

is called the Ricci curvature of manifold  M  at the point  p  in the direction of 

the vector  X. 

Let  ||X || = 1 . Then from formulas  (22)  and  (23)  we get 

rp(X) = Rp(X,X) = 
i=1

m

Rp(Ei,X,X,Ei) = 
i=1

m

Rp(X,Ei) = 
i=1

m

Kp(X,Ei) .         (24) 

This formula allows us to calculate the Ricci curvature, if we know all the sec-

tional curvatures  Kp(X,Ei), i = 1, 2, … , m.  

Definition 68. Trace of the Ricci tensor at a point  pM  is called scalar 

curvature of manifold  M  at point  p, and we denote it  p.    

p = 
i=1

m

rp(Ei) = 
i=1

m


j=1

m

Kp(Ej,Ei) = 
i, j=1

m

Rijji. 

§4. Function of distance of Riemannian manifold.  

Extremal property of geodesic lines 

Let  M  be a connected Riemannian manifold. Denote  pq  the set of all 

piecewise smooth paths  [0,1]→M  with the beginning at  p  and end at  q. 

Since  M  is connected,  pq . Sometimes we will identify a path and its im-

age – a curve on the manifold. 
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Theorem 8.  (Extremal property of geo-

desic lines I)  Let  M  be Riemannian manifold,  

  be a geodesic line in  M  and  p. Then there 

is such neighborhood  V  of the point  p  that for 

any point  qV   the segment of geodesic line  

  connecting  p  and  q  is the shortest line 

among all the other lines from  pq, which are 

included in  V  (figure 49).  

This theorem tells us, that geodesic line is the shortest “in small”, i.e. on 

its small sections. At large it may not be the shortest line. 

Example 23.  Let  p, q  be two points on 

the cylinder, which lies on one circle and are 

close enough (figure 48). We delete a point s, 

which belongs to the shortest arc of the circle 

connecting  p  and  q. Let  1  be the longest arc 

of the circle connecting  p  and  q. Then  1  is 

the only one geodesic line from  pq, but it is 

not the shortest one. Line  o  depicted on  figure 

50  is shorter, then  o.  

Consider a function   : MM→R    

(p,q) = inf{L(c) |cpq}, 

where  L(c) is the length of path  c (is the length of the shortest curve, that con-

nects  p  and  q). 

Theorem 9.  (M,)  is metric space. 

Proof.  We need to check, that the following axioms are true. 

1. (p,q) =(q,p); 

2. (p,r) + (r,q)  (p,q) (figure 51); 

3. (p,q)  0  и  (p,q) = 0    p = q . 

Axiom 1 is obvious from the definition. 

Suppose, that axiom 2 fails. Consider value 

=(p,q) – ((p,r) +(r,q)) > 0.                                  (25) 

Let  c1pr  and  c2rq  are such paths, that   

L(c1) –(p,r) < /4 , L(c2) –(r,q) < /4 .  

Then gluing together paths  c1  and  c2  we get such path  c, that  

L(c) = L(c1) + L(c1)   and   

0 < L(c) – ((p,r) +(r,q)) < /2 .                      (26) 

Let’s make difference  (25) – (26). We get     

 
p 

q  

V 

fig. 49 

1 

o 

fig. 50 

q p 
s 

p 

q 

r 

fig.51 
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(p,q) – L(c) > /2      L(c) <(p,q) .  

It is contradiction and it means that our supposition is false.  

Let’s prove 3. If  p = q  then the path  c(t)p  connects  p  and  q  and  

L(c) = 0    (p,q) = 0. 

Conversely, let  (p,q) = 0. It means that  > 0   there is  cpr  such 

that   L(c) <  . Therefore points   p  and  q are into a sufficiently small neighbor-

hood, where the geodesic line  dpq  is  

the shortest one. Thus  L(d) <    > 0   

   L(d) = 0 .◼  

The question arises: why in the defi-

nition we have infinum and not minimum? 

Consider the plane with the deleted origin:  

R2\{O}. Let  p = (1,0), p = (–1,0)  (figure 

52). According to the definition  (p,q) = 2, 

but there is no the shortest path in  pq, i.e. 

minimum cannot be reached. However there 

are paths with length as close to 2 as you 

like. 

Theorem 10.  Topology of the metric space (M,)  defined by the function  

  coincide with the topology of the differential manifold  M. 

In order to prove the theorem we must prove, that open set in the manifold  

M  is open in metric space  (M,)  and vice versa. 

If we fix point  pM, then we get a function on manifold  M  

f(q) =(p,q) ,  f : M→R.  

Theorem 11.  Function  f 2(q)  is differentiable. 

Immediately note that function  f(q)  itself is not differentiable.  

Example 24.  Let  M = R, p(0), q(x).  

Then  f(q) = | x |  (figure 53). It is well-known, 

that this function is not differentiable at point  p. 

Analogously, if  p  is the north pole of the 

sphere  S2  and  r  is the south pole, then out 

function is not differentiable both at  p  and  r. 

The property of radial isometricity of 

mapping  expp : TpM→M  leads to the fact that 

for    small enough it maps the ball  

B(0,)TpM  onto the ball  B(p,)M. 

Theorem 12.  (Extremal property of geodesic lines II)  Let  M  be Rie-

mannian manifold. For any point  pM  there is a neighborhood  W, that has 

the following property. For any points  q1, q2 there is the only one geodesic line 

fig.52 
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connecting the points and lying entirely in  U. This geodesic line is the shortest 

among all the curves from  pq. 

Before we prove the theorem we need some definitions. 

Definition 69. Open subset  G  of Riemannian manifold  M  is called sim-

ple, if for any two points  p,qM   there is no more than one geodesic path  

c : [0,1]→G with ends  p = c(0), q = c(1). 

It is obvious, that any open subset in  G  is simple, if  G  is simple. 

Definition 70.  Subset  G  of a Riemannian manifold  M  is called convex, 

if for any two points  p,qM   there is a geodesic path  c  with length  

L(c)=(p,q) . Subset  G  is called strongly convex if it is convex, and moreover 

all the balls  B(p,)G  are convex. 

Theorem 12 now can be formulated as follows. Each point  pM  has a 

convex neighborhood. As the matter of fact, it has strongly convex neighbor-

hood, but we are not going to prove that fact. 

Proof of theorem 12.  Step I. Let   pM  and let  V  be its neighborhood 

from theorem 8. Let  STpM  be such subset, that  (expp)|S  is one-to-one map-

ping  and  V1 = expp(S)V. Then point  p  can be connected with each point  

qV1   with no more than one geodesic line. Let   

(p) = sup{ | B(p,)V1 }. 

It is radius of the biggest ball in  V1   with center  p. We will call    the radius of 

injectivity of mapping  expp. 

Denote  W = expp(B(p,(p)). Then  W ̄ ¯  is closed bounded set and therefore  

W ̄ ¯  is compact. We except without poof, that  (p)  is a continuous function. 

Thus it reaches its minimum on  W ̄ ¯.  

Denote  o= min
rW ̄¯

 (r). Then ball  U = B(p,o/2)  (figure 54) is a simple set. 

In fact,q1,q2U  holds   

(q1,q2)(q1,p) +(p,q2)
o

2
 +
o

2
 = o. 

It means, that  (q1)(q1,q2)    q2B(q1,(q1)). Thus  expq1
  maps injectively  

B(0,(q1))  on  B(q1,(q1)), i.e. there can’t be more than one geodesic 

line connecting  q1  and  q2  inside  B(q1,(q1)). But  B(p,o/2)B(q1,(q1))  and 

therefore B(p,o/2)  has the same property. 
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Step II. We except without prove, 

that unique geodesic line  , connecting 

q1  and  q2  inside  V  doesn’t leave  U 

(figure 55).  

Step III. is the shortest among all 

the lines from  q1q2
 that don’t leave  V. 

In order to complete the proof of the 

theorem we must prove, that any line 

which leaves  V  is longer    than  .  

Exersise 9.  Prove it independent-

ly, using figure 56. 

§5. Compaction 

Definition  71. Let  (M,)  be metric space. We say, that sequence of 

points  x1, x2, … , xn, …  converges to point  x, if > 0  there is such number  N, 

that  {xN+1, xN+2, … }B(x,), that is, whatever the ball has center at point  x, 

starting from certain number  N  all the points of the sequence fall into this ball. 

Definition  72. Let  (M,)  be topological space. We say, that sequence of 

points  x1, x2, … , xn, …  converges to point  x, if for any neighborhood  V  of 

point  x  there is such number  N, that  {xN+1, xN+2, … }V. 

Definition  73. Set  W  in topological space  (M,)  is called precompact, 

if from any sequence of points  x1, x2, … , xn, …  we can choose convergent sub-

sequence {xi1, xi2, … }. If this subsequence converges to  point  x, which always 

belongs to  W, then  W  is called  compact. 

Example 25.  1)  Ray  [0,+)  in topological space  R  is not precompact. 

We can’t choose convergent subsequence from sequence  1,2,3,….   

2)  Interval  (0,1)  in topological space  R  is precompact, but not com-

pact. Any subsequence from sequence  {1/2, 1/3, 1/4,…} converges to point  0, 

but  0(0,1). 

p V1 

U 

q1 
q2 

B(q1,(q1)) 

fig.54 
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3)  Segment  [0,1]  in topological space  R  is compact. 

4)  The sphere and the torus in three-dimensional space are compact. 

Definition  74. Set  W  in metric space  (M,)  is called bounded, if there 

is such ball  B(p,r), that  WB(p,r). It is equivalent to the fact, that the diameter 

of this set is finite:  d(W)< . 

Theorem 13.  Set  W  in the Euclidean metric space  Rn  is precompact if 

and only if it is bounded. (The sketch of the proof for  R2  will be given on lec-

tures). 

Definition  75. We say, that aggregate of sets  {U}I  forms a cover (an 

overlapping) of set  W  if  W 
I

 U. 

Theorem 14.  Set  W  in metric space  (M,)  is compact if and only if it is 

possible to choose it’s finite subcover from any it’s infinite open cover. 

In other words,  W  is compact    from infinite number of open sets, that 

cover  W  we can choose finite number, that also cover  W. 

Example 26.  1)  Sets (–1,1), (0,2), 

(1,3) … cover ray  [0,+). We can’t choose 

finite number of sets, that cover  [0,+).   

2)  Sets  … (1/2n,1) …  (1/8,1), 

(1/4,1), (1/2,1)  forms cover of interval  

(0,1). We can’t choose finite number of 

sets, that cover  (0,1). 

3)  Plane  R2  can be covered by open 

balls of radius 2 with centers at integral 

points (figure 57). It is obvious, that it is 

impossible to choose finite cover from these 

sets. 

Definition  76. Set  W  in topological space  (M,)  is called bicompact if 

it is possible to choose it’s finite subcover from any it’s infinite open cover. 

For metric spaces notions of compact and bicompact sets are coincide, nut 

for arbitrary topological space they are different. 

Why theorem 12 is not true for an arbitrary metric space? Consider  

R2\{0} – the plane with the deleted point  0. Let  B(0,r)\{0} be an open ball with 

the deleted center. This set is bounded, but it is not precompact, because any se-

quence, that converges to  0  in  R2  does’t converge in our space. For instance, 

sequence  (1/i,0) does’t converge (figure 58). This is because that our space is 

not complete, one point is missing in it. 

By the way, B(0,r)\{0}  is homeomorphic to infinite cylinder or to open 

ring  B(0,2)\B ¯(0,1)  (figure 59). 
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Theorem 14.  Any continuous function f : W→R  defined on a compact set  

W  attains its maximal and minimal values on W. 

Example 27.  f(x) = ex  is defined on  R. R  

is not compact, and this function doesn’t attain 

the largest and least values. We can only say 

that  inf
R

 f(x) = 0 , sup
R

 f(x) = + .  But if we con-

sider the same function as defined on  [0,1], 

then  max f(x) = e ,  min f(x) = 0  (figure 60).  

Example 28.  The sphere and the torus 

are compact. Therefore any continuous function  

f : S2→R  or  f : T2→R attains its maximal and 

minimal values. 

§6. Complete Riemannian manifold 

Remember which examples we used in order to show, that not always two 

points of connected Riemannian manifold M  can be connected by a geodesic 

line, that not any geodesic line can be infinitely prolonged and that exponential 

mapping can be defined not on the entire  TpM. We took the cylinder and deleted 

a point from it, or we have considered the semiplane (half-plane). These mani-

folds are as if “not complete”. It is only “a half of plane” or “manifold with a 

hole”. 

Definition 77. Riemannian manifold  M  is called complete, if metric 

space  (M,) is complete, where    is the function of distance of the manifold.  

Suppose, that Levi-Civitta connectivity is introduced on manifold  M. 

Theorem 15.  (of Hopf-Rinov) The following conditions are equivalent: 

1)  M  is complete; 

2)   pM  mapping  expp  is defined on the entire  TpM; 

3)  any geodesic line defined on some interval  I  can be prolonged to ge-

odesic line defined on  R; 

4)  every closed and bounded with respect to    subset in  M  is compact. 

fig.58 

0 a1 a2 

a3 

a4 

fig.59 

0 

fig. 60 

O 

x 

y 

1 

1 

e 

Ре
по
зи
то
ри
й В
ГУ



51 

 

The following statement is an implication of each of the statements 1-4: 

5) Any two points  p,qM  can be connected by a geodesic line of the 

length  (p,q) . 

§7. Comparison theorems. Connection with curvature 

 and topological structure 

Theorem 16.  (Toponogov's angle comparison theorem)  Let  M  be a 

complete Riemannian manifold, m = dimM2 . Suppose, that for all  pM and 

for all two-dimensional spaces  TpM  holds  K= const > 0. If  > 0  we 

denote  M͠ 
 = Sr

m, r =
1


  and if   = 0  we denote  M͠ 

 = Rm. 

Let  = (co, c1, c2)  be a geodesic triangle in  M  

with angles  (o,1,2). Then there is triangle 

 ͠ = (c 


o, c 


1, c 


2)  in  M͠ 
   with angles  ( 


o, 

 
1, 

 
2)  

such that   

L(ci) = L(c 


i)                  (27) 

i 
 

i , i=0,1,2.               (28) 

We shell note, that for  Rm  holds  K0  and for  Sr
m  holds  K=

1

r2. 

Therefore the theorem can be reformulated as follows. If the sectional curvature 

of manifold  M  is greater or equal to then the sectional curvature of manifold  

M͠ 
 , then a geodesic triangle on  M  has angles greater or equal than correspond-

ing geodesic triangle with equal sides on  M͠ 
 . 

Theorem 17.  (of Hadamard-Cartan)  Let   M   be a complete Riemannian 

manifold, n = dimM2   and  K0  for all  TpM and for all  pM. Then for 

any point  pM  the mapping  expp : TpM→M  is diffeomorphism. In particular,  

M is diffeomorphic to  Rn. 

Thus, a space of non-positive sectional curvature is diffeomorphic to Rn; 

therefore, it is covered by only one map (M,). As    we can take  

expp
– 1 : M→TpM. Другими словами,  M это есть  Rn на котором вместо стан-

дартной метрики введена некоторая другая метрика. In other words, M  is  

Rn on which some other metric is introduced instead of the standard metric. 

Denote  M = sup
p,qM

(p, q) – the diameter of a manifold  M  with respect to 

the internal metrics  . 

Theorem 18.  (of Meyers)  Let   M   be complete Riemannian manifold, 

and K= const0  for all  TpM and for all  pM. Then for all  p,qM  

holds the inequality  
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(p, q)M



. 

This means that a manifold with positive sectional curvature separated 

from zero has a bounded diameter. Why do we write  K> 0  instead of  

K> 0? The second means that the curvature can tend to zero in some directions, 

and the first notation means that K  is delimited from zero by a constant. Recall 

that the diameter of a sphere of radius  r  with respect to the intrinsic metric is 

equal  r =



 (figure 28). 

Theorem 19.  Let   M   be a complete Riemannian manifold, and 

K= const0  for all  TpM  and for all  pM. If   M =



, then  M  is 

isometrically diffeomorphic to the sphere  Sr
n  of the curvature (i.e.  r =  




). 

In other words, if  M  has the same diameter as the sphere, and its section-

al curvature is not less than that of the sphere, then  M  is isometric to the sphere. 

Basically, this means that  M  is the sphere. 

Theorem 20. (The theorem on sphere) Let   M   be complete Riemannian 

manifold, n = dimM2 . Let the sectional curvature of the manifold  M  is   

-bounded with  >
1

4
  i.e. 

1

4
 <<  K1  

for all  TpM  and for all  pM. Then M  is homeomorphic to the sphere (i.e. 

M  is topologically arranged, like a sphere, and with a special specification of 

the metric, it can serve as a model for  M). 
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