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Intruduction

This textbook is intended for the organization of independent work of stu-
dents of the second stage of higher education, studying in the specialty "Mathe-
matics and Computer Science". The theory of differentiable manifolds and Rie-
mannian manifolds is presented. We avoid detailed proves. To get a positive
mark on the exam, students should be sure to compile a glossary of terms for the
entire subject. It is recommended to wuse an electronic resource

https://www.multitran.com/. The presentation of the theoretical material is ac-

companied by simple exercises that must also be performed.


https://www.multitran.com/

Chapter 1. Differential Manifold

§1. Differentiability

Recall that R" is a vector space, but we will also consider its elements as
points. Let U and V be two domains, UcR", VcR™ and let f:U—>V be
some function. Since UcR", we can consider f as a function of n variables
(X1, X2, ..., Xn).

Let xeR" Then y=f(x)eR™ Hence y can be represented in coordi-
nates as (Y1, Yz, ...,Ym). Accordingly we can write f(X)=(fi(x), f2(X), ..., fm(X)),
where fi(x), f2(x), ..., fm(X) are common functions of n variables.

Recall that R" are R™ metric spaces. Denote their metrics.as p1 and po.

Definition 1. We write x —> X, if p1(X,X,) > 0. We write

4o= lim 69

if
lim pa(f(x),yo) =0:
X_)XO.
This is equivalent to xILnQ fix)= vy, forall i=1,2,...,m.
Definition 2. Function f:U—V is said to be continuous at a point x,eU,
if

lim () =f(xo).

Function f:U—V s said to be continuous in the domain if it is continuous at
every point x,eU.

It is easy to prove, that f:U—V is continuous if and only if all the func-
tions fi(x), 1=1,2,...,m are continuous.

Since R" are RT vector spaces, there are operations of the sum and the

difference of two points.
Definition 3. f(x)= lim KKX:U‘;X—) i=1,2,...m, if this limit exists
— A0
and is finite.

It is easy to prove, that fi(X,) = (fik(X), f2%(X), ..., fnki(X)), 1=1,2,...,m, i.e.
we can find partial derivatives coordinatewise.

Suppose that f%(x,) exists at every point X,eU. Than it is also a func-
tion. Therefore we can calculate its partial derivatives, which are also functions
and so.on.

Definition 4. We say, that f(x) belongs to the class C"(U) if it has partial
and mixed derivatives of the orders 1,2, ...,n and they are continuous functions.
We write that f(x) e C*(U) if it has partial and mixed derivatives of any order.

Each coordinate function can be expanded into a Taylor series at each
point and in this way the entire function f(x) can be also expanded into a Taylor
series at each point.



Definition 5. We say that f(x) is analytic function and write f(x) € C*(U)
if its Taylor series at each point converges to the function f(x) itself.

All elementary functions of one variable of the class C*(U) are analytic
in their domains of definition.

Example 1. The following function is AY
not analytic:
1 1
f(x)=1 €x£0 =TT T e S
) { 0,x=0
X

All the derivatives and the function itself are

equal zero at point 0. Therefore its Taylor \
series converges to the null function, and not _
to the function f(x). You can see its graph . 1

on figure 1.

Definition 6. Consider numbers fij(x,) = (fi) %(X.). The matrix composed of
this numbers is called the Jacobi matrix of the mapping f at the point x,. We
denote it as J(X,).

Definition 7. Mapping f:U—V is called diffeomorphism, if

1) fe CHU);

2) f is homeomorphism.

Of course, f can be homeomorphism only if m=n, i.e. we can consider,
that U and V are in the same space. In this case J(x) is square matrix and we
can calculate its determinant.

Definition 8. The determinant |J(x,)| is called the Jacobian of the map-
ping f:U—V at the point X,.

It turns out, that f is a diffeomorphism if and only if feC(U) and
|1J(X)|#0 VxeU.

Let f.U->V, g:VoW
be two mappings, U,V,WeR", £
Xo€ U, f(Xo)=YoeV, / \gA
9(Yo) =2, € W. Consider the
composition of the mappings

h=gef:U->V

(figure 2).

Let Ji(X,) be Jacobi matrix for the mapping f at the point Xo, J2(yo) be
Jacobi matrix for the mapping g at pointy,, J(X,) be Jacobi matrix for the
mapping h at the point x,. Then it turns out that

J(%o) = J1(Yo) © J2 (Xo) 1)

h=gof

—

fig. 2
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and therefore |J (Xo) |=|J1(Yo) o [J2(X0) |. Consequently, h is a diffeomorphism

ifand only if f and g are diffeomorphisms.

Example 2. Let coordinates (x},x?), (y%,y?), (z},z%), be defined respective-
ly on the domains U,V,W. Consider mappings f and g, which are defined by

the formulas
PR L
ya=x, L Z2=ylyA

. { ;= (x%)°,

Lya=xiy.

Then

Jacobi matrixes are

J =(§_) B(EZ)ZJ : Jl=(>1,2 81) , Jo= [()(()2)3 g)(()l(z));)z) :

Exercise 1. Check, that formula (1) is true inthis case.

We see, that |J|=0 at all points where x?=0,and |J;|=0 at all points
where y*=0. Therefore if we consider the following domains U and V (figure
3), then restrictions of mappings f|y and g|,._are diffeomorphisms.

L
N
&
fig. 3

But f just maps U on V. That is why restriction h|, is diffeomorphism and it
is easy to find out, that W=h(U)=U.

Let c:1—>V. bedifferentia-
ble path, y=c(l) be'its image — a 4
curve in R", pey - be a point on .
the curve and let p=c(t,) (figure |
4). Suppose, that a function 1
f.R">R is defined in some
neighborhood of point p. If we _
substitute c(t) in the function f, fig. 4
we get a function of one variable f(c(t)). We can calculate its derivative

% (f(c(t))), and its value at the point p: %(f(e(to))).




Definition 9. The derivative of the function f along the path c¢ at point p
. d
is the value 5 (f(c(to))).

Suppose that (x},x?,...,x") are coordinates in R". Then equations of the
path are:

xt=cl(t),
o @
X"=c"(t),
According to the rules of derivation
) =55 ) 4o OV +.. 2 @O) S @)

Vector with coordinates (66—;1 66—):2 %} Is called the gradient of the function
f, and we denote it gradf. Vector with coordinates ((cX(t))’, (c3(t))’, ..., (c"(t))")
IS tangent vector to the path c. It is the vector of the first derivative: c'(t). There-

fore formula (3) can be written in the vector form as follows:

£ (f(c() = (gradf) - c). @)

The principal result is following. The derivative c'(to)
of function f along the path ¢ doesn’t depend

on path c itself: it depends on the vector c'(t) Y3 P

only. Therefore for all the paths, that have the

same tangent vector of the first derivative at

point p (figure 5), have the same derivatives 11
along the path for any function. fig. 5

Definition 10. We_ will say that such
paths are equivalent at point p.

This result gives us opportunity to define the directional derivative of the
given function.

Definition 11. The derivative of the function f in the direction of vector
Y(YL,Y?, ...y at point p is the value

Y2

of of of
Ypf:gradpf-YzyyHyyzt.. @yn, (4)

where all partial derivatives should be calculated at the point p.

We see that each vector at the point p defines an operator acting on func-
tions. We will say that each vector acts on functions. It is easy to prove the fol-
lowing properties, using formula (4).

1) (Xp+Yp)f =Xf+Yf;

2) oXpf = a(Xpf);

3) if Ypy=c'(tv), then Y f=(f(c(to)))".

8



Let (Ei,E,,...,E,) be abasisin R". According to the definition 10

of of of of
(El)pf:gradpf' Elzy . 1+&-0+ % 0:% ]
Analogously, (Ei)pf=§—;; ,i=1,2,...,n. We will call the derivative in the direc-

tion of a basis vector a basis derivative. Finally we get the following formula:
Ypf= Yy (Eo)pf+ YA(E2)pf+... Y(En)of.
It means the following. Each vector Y can be decomposed in alinear combina-
tion of the basis vectors with definite coefficients. Then Y,f is the linear combi-
nation of the basis derivatives with the same coefficients.
It is important to emphasize, that value X,f depends only on the value of

the function f at some neighborhood of the point p, i.e. if two functions coin-
cide in little domain around p, then they have equal directional derivatives.

§2. Separability axioms

The concept of a topological space is too general. It acquires its geometric
content only after the introduction of additional axioms. An arbitrary topological
space can be very different from a metric one. Let (M,t) be a topological space.

Zero axiom of separability (Axiom of Kolmogorov). Among two points
X,y € M at least one of them has a neighborhood, that doesn’t contain the sec-
ond point.

We will call topological spaces satisfying this axiom T,-spaces.

The first axiom of separability. For any two different points x,y e M
there is a neighborhood U(X) of point X, that doesn’t contain y and there is a
neighborhood V(y) of point y, that doesn’t contain X,

We will call topological spaces satisfying this axiom T;-spaces.

Exercise 2. This axiom is equivalent to the requirement that any point be
a closed set. Prove this statement.

The second axiom of separability
(Hausdorff axiom). For any two different
points. x,y€ M there are a neighborhood
U(x) of point x, and a neighborhood V(y)
of point y, which doesn 't intersect (figure 6).

We will call topological spaces satisfying fig. 6
this axiom T,-spaces or the Hausdorff spaces.

Definition 12. Let s and S be two collections of sets (families of sets).
If each set from the collection S is union of sets from the collection s, we say
that collection s additively generates S or it is the additive base of S. If each
set from collection S is intersection of sets from collection s, we say that col-



lection s multiplicatively generates S or that s is the multiplicative base of
S.

Example 3. Consider a collection s of all infinite intervals (—,a) and
(b, +0) and consider a collection S of all intervals on the numerical line R.
Each finite interval (a,b) from S is intersection of two intervals (-«,a) and
(b, +0). Each infinite interval from S is intersection of two equal intervals from
s. Thus s multiplicatively generates S. Any open set in R is union of several
intervals (may be of infinite number of intervals). A collection of all opensets is
just the topology t of R. Therefore s additively generates .

Definition 13. Additive base s of the topology t is often called the net
of topological space (M, ). If collections of sets s, multiplicatively generates
the net of topology, then it is called subbase of topology.

It turns out that collection of sets s isanetin (M,z) ifand only if for
any point x and its neighborhood U(x) there is V. es;such that xeVcU(X).

Example 4. The collection of all open squares.is S~
a net of metric topology in the plane R2. We can. in- PN
scribe a square V in any neighborhood U(x). of any ,~ e | \
point x in R?so that xeVcU(x) (figure 7). ( v ,'

Definition 14. We say that topological space \\\ /I
(M, 1) has numerable weight if it has'‘a numerable net \Q(X) 7
and we say that this space satisfies the second axiom of T
countability. fig. 7

It is proved, that any space R" (for finite n) satisfies the second axiom of
countability.

§3. Notion of a manifold. Examples

We have defined the concept of a two-dimensional surface in three-
dimensional space. However, in various branches of mathematics, surfaces of a
higher dimension are often used, which are located either in some kind of space
or inside some other surface. In addition, these surfaces are often viewed on
their own with no enclosing space.

The simplest example of the need for such an approach. It has already
been proven that the space we are in is curved. This is not Euclidean space, but a
three-dimensional surface. It can be viewed as embedded in four-dimensional
space-time (Minkowski space). But if we are not talking about the theory of
relativity, but only about the geometric shape of space, this surface should be
considered "by itself."

magine that some two-dimensional creature lives in a two-dimensional
world, where the sum of the angles of any triangle is equal to two straight lines
and the Pythagorean theorem is fulfilled, as in the plane. This creature can
measure distances between points. But his world is large enough, and it is still

10



impossible to measure it entirely. (i.e. our being does not go beyond some small
area). Can this creature determine if its world is a plane, a cylinder, or a cone?
No, he can not. From the point of view of internal geometry, small parts of a
cylinder or cone are arranged in the same way as a piece of a plane.

A man is in a similar situation. We cannot imagine the geometry of the
Universe "as a whole". We can only find out that the nearest part of the Universe
is arranged topologically, like Euclidean space; but this part is not isometric to
the part of the Euclidean space (i.e. the lengths of the curves do-not coincide
with the lengths of the curves in the Euclidean space).

So how can we define the concept of a multidimensional surface that is
not located in its enclosing space?

Definition 15. Hausdorff topological space (M,z) with countable base
is called m-dimensional topological manifold, if it is locally homeomorphic to
an open subset of the Euclidean space R™. This means that for each point xeM
there is its neighborhood W; in M and a homeomorphism o;: W;— U;, where
Ui is a domain in the Euclidean space. Pair (Wi, ;) is called a map, and the set
of all such maps is called atlas of maps of M. Additionally it is assumed that the

manifold must have an atlas consisting of a finite or countable number of maps,
which cover the entire manifold.

Suppose, that two maps

(Wi, ¢i) and (Wj, (pj) of the
manifold M intersects: w

Wij:WiﬂWjig. M
Then the set W; turns out to | / B \(Di
be depicted on two maps at @ i

once (figure 8): =
—
Uij=i(Wij), Uji=¢;(Wi;) / //

(figure 7). There we have a
mapping fig. 8
0ij =i teqj: Uy —> Ui

Since both mappings ¢i are ¢; are homeomorphisms, then ;jis also a home-
omorphism.

Definition 16. Homeomorphism o; : Uj —> U;i is called a transition
function from the map (Wi, ¢i) to the map (W;, ¢;). If this functions for all
maps are differentiable of the class C¥, than manifold M is called a differentia-
ble manifold of the class C* (k=1,2,..., ). If this functions for all the maps
are differentiable of the class C®, than manifold M is called an analytic mani-
fold. Manifold of the class C° is called topological manifold.

11
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Thereafter (henceforth, from henceforth) it is always assumed by default
that the manifold is differentiable manifold of the class C*.

Definition 17. We say that a map (V, ) is consistent with the atlas 4, if
A'=4aU (V,p) is an atlas of the same class of differentiability. An atlas is called
full if it contains all maps consistent with the atlas 4.

It is obvious, that full atlas is not countable.

Examples. 5. A circle (figure 9) is a one-dimensional manifold. At large,
it is not homeomorphic to an open interval of numerical line, but:a neighborhood
of any it’s point is a simple arc, i.e it is homeomorphic to an interval.

fig .10

6. Any simple surface is two-dimensional manifold. For instance, for the
sphere S? (figure 10) an atlas can consist of two maps: (SA\{N}, p1) u (S2\{S},
p2), where p; is stereographic.projection from the north pole N on the plane,
and p» is stereographic projection from the south pole S.

We will demonstrate later that mapping p;'p: is a differentiable of the
class C~. Therefore, the sphere is a differentiable manifold of the class C*.

Exercise 3. Show, that'a set M={peR?| p,>0, pi(pf—p2) =0} in R? is
not locally Eucledean, but the sets M\{0} and {peM| p1>0} are locally Eu-
cledean.

Let (V,@)e 7 be a map of a manifold M. Then the mapping ¢:V—U
gives us opportunity to introduce coordinates on the domain V. We say that the
point.p has coordinates (x!,x3...,x™) if its image q=¢(p) in the domain U
has the same coordinates.

Let (W,y)e2 be another map, y:W—U;, and qu(yLy?,...,y")=
=y(p)eU; . Then p acquires another coordinates (y,y?...,y™). The transition
function 6=yop~! is coordinate replacement function in domain S=VNOW

p1(x

fig. 9

(figure 11) and it is diffeomorphism of the class C*.

We shell note, that 6 is not defined on S itself, nevertheless we call it
coordinate replacement function just in S. On the other hand, if there are given a
map (V,9)eA4 and a coordinate replacement function ©, which is dif-

12



feomorphism of the class C* and is defined in some part U’ of the set U, then
we get anew map (S,y), y=00¢, S=¢ }(U") (figure 11).

(%
/C B3

fig. 11

Example 7. Let M=R, V=R, and let @:R—>R act by the formula
o(t)=t. Then (V,p) isa map of the manifold.and its atlas 4 may consist of one

map. Because there are no transition functions, this manifold of class C*.

Consider one more map
of the same manifold (W,vy),
W=M, y(t)=t3. (figure 12).

The  transition  function / \
=yop! acts by formula 6=yop
0=yo0 _y u I=wee
o(t)=t3. But 0 is not dif-
feomorphism, because its Ja- R

cobian |J| equal 0 at the fig.12
point t=0. It means that the

new map doesn’t consistent with the atlas 2. However, if we consider an atlas
A' that consists of one new map, the manifold atlas 2’ is also of the class C®.

But the manifold with atlas {(V,),(W,y)} is only topological manifold (of the
class C°).

Let’s get'back to Example 2 on a new level.
Example 8. Consider the n-dimensional sphere

M=S"={aeR"™!p(0,a) = 1}={ac R™(al)2+ (@2)?,..., @ )2 =1}.

(here 0 is a point “zero vector”). Let p(0,0,..,1) be the north pole and
q(0,0,..,—1) be the south pole. Consider two domains that cover the whole
sphere: V=S"\p and W=S"\q. We are going to do projections on the n-
dimensional plane, which contains 0 and is perpendicular to the line pqg.

M=V=R

R

13



Rn

fig.13

Let ¢ be the projection from the north pole and  be the projection
from the south pole (figure 13). If a(yl,y?...,y*™Y), then ¢(a)=x(x,x?,...,x"),
where

al an
X=X S (4)
Analogously, y(a) =y(y.,y?,...,y"), where
al an
yl=1+an+l)-"7yn:1+an+l- (5)

We are going to find formulas of transformation of the coordinates. From
formulas (4) and (5) weget

1_an+1 1_an+1
y1:X1.1+an+1,...’yn:Xn.—1+an+1. (6)

Further on, from (4) we get

(xXH2+ ()2 + .+ (x)2 =

@)+ (@)% +..+@")* _ 1-(@")?* _1+a"!?
(1_an+1)2 —(1_an+1)2—l_an+1-

Thus
1— S n— X"
Yo7 D2+ Q)2+, + ()2 > .Y = )2+ (2 +.. +(x")

These formulas are defined on R™0, and the function 6:R™0— R™0, which is
defined by these formulas, is of the class Ce.

We should underline, that in the definition of a manifold we does not
mention the ambient space. We consider a manifold “by itself”. In order to study
the geometric properties of a manifold, it is necessary to define the notion of a
curve on a manifold, and the more general notion of a submanifold (manifold,

14



that contains in the given manifold), as well as the notions of a tangent vector
and a vector field on a manifold.

Remark. The definition of a manifold does not say that it must be con-
nected. If a manifold is not connected, it can be represented as a union of some
number (finite or infinite) of connected manifolds. Therefore from henceforth it
is always assumed by default that the manifold is connected.

§4. Mappings of manifolds

Definition 18. Let M and N be differential manifolds of the dimension
m and n respectively. Let f:M—N be a mapping defined in some neighbor-
hood of a point peM. Let (V,p) and (W,y) be maps of the manifolds defined
in a neighborhoods of points p and f(p) respectively. Let U;=0o(V),
U, =wy(W) (figure 14). Let (x},x?,...,x™) and (y,y?...,y") be coordinates, that
are defined by the mapson V and W.

Definition 19. Mapping f=wyofo@*:V —W. is called coordinate repre-
sentation (koopauHatHO¥ 3ammchro) Of mapping f in the maps (V,¢) and
(W,y) or coordinate representation of mapping. f in coordinates (x*x?,...,x")
and (yLy?,...,y").

(oL

/.//“/ ®/

fig. 14

Definition 20. Mapping f is called differentiable of the class Ck
(k=0,1,2,...,00) atthe point peV if its coordinate representation f is differ-
entiable of the class C* at the point ¢(p)eU;. We can’t speak about analytical
mappings because the manifold is supposed to be only of the class C*.

Suppose that maps (V,9) and (W,y) belong to atlases 4; and 4, of
manifolds M and N. Points p and f(p) may belong to several maps from

these atlases. It is easy to prove, that in this case, the coordinate representation f
has the same class of differentiability in all these maps.

15



A function on a manifold is usually called a mapping f:M—R. We may
consider R as manifold also with atlas, consisting of one identical map. There-
fore the definition 18 is valid for such kind of mapping also. As a result we get
the following definition.

Definition 21. Let M
be a manifold, 2 be its atlas,

peM, and f be a function M

which is defined in some / f R

neighborhood of point p. Let ——  ~———— T

(V,p)e.4 be a map, which de-

fines coordinates (x*,x?, ...,x™) ¢ 2
—

and peV. Then the function

f:f0@71:\7—)R /
(figure 15) is called the coordi-

nate representation of mapping
f in the map (V,9) or in coor- fig. 15
dinates (x%,x%,...,x").

Definition 22. A function f is called differentiable of the class C* in
some neighborhood of point p, if its coordinate representation is differentiable
of the same class in some map from the atlas.

Definition 23. Let M and. N be differentiable manifolds. A mapping
f:M—N is called the diffeomorphism if it is a homeomorphism and it is differ-
entiable of the class C=. If there exists a diffeomorphism f:M—N , then the
manifolds M and N are called diffeomorphic.

If two manifolds are diffeomorphic, then they are equally arranged in
terms of their differential structure. Using the diffeomorphism we can transfer
the atlas from M to.N. and. its maps will be consistent with the atlas of N. Any
differential function on M generates differential functionon N.

More exactly, if«(V,¢) isa map on M, then (f(V),pof1)isamapon N
(figure 16). f




If g:N—P is a differentiable mapping of

manifold N in some manifold P, then f N g
gof:M—P is also differentiable mapping M / \ b
(figure 17). If g:N—>R is differentiable ~ gf

function, then gof:M—>R s also differ-
entiable function of the same class.
Example 9. Consider M=R with usual structure and N=(~1,1).Then

fNSM, (=13

fig. 17

is diffeomorphism.

Exercise 4. Let M=R «—l
with usual structure and M N
N =R with atlas, that consists
of one map (R,vy), y(t)=t. lid 7 WT l !
Consider mapping f:N—>M, R N R

that acts by formula f(t)=t3.
Find its coordinate represen- _
tation (figure 18). fig. 18

f(t) = (idofoy=t)(t)
and prove that f is diffeomorphism. So, although M and N have different dif-
ferentiable structures, these manifolds are diffeomorphic.

Exercise 5.  Suppose now, that M and N are the same as above with
the same atlases. Consider mapping. f: N— M, that acts by formula f(t)=t. Find
its coordinate representation. Is
this mapping it is differentiable R
on the entire manifold?

f
Example 10. Consider
the sphere S27 with the atlas \
like in example 4. Consider a
function f:S2-»R, that acts by
formula f(a)=a®. We have for-

mulas for mapping o: 0 f:fo(p/'

al a?
1— vl —
XK=1 3 X717 5"
From this formulas we can de-

rive

o 1= (X2 ()2 R?
T L (X2 ()2

Thus f:R2—R (figure 19) acts by the formula

fig.19

17



- _ 1_(X1)2_(X2)2
f)="7 o2+ (22 °
We have infinitely differentiable function. Therefore f is also infinitely differ-
entiable.
Exercise 6. Find coordinate representation of the function f(a)=as. Is
this function differentiable?

One more special case of a mapping of a manifold is a curve on a mani-

fold.
Definition 24. A curve on differentiable manifold M issuch set ycM,

that for any map (V,p) the set y=¢(y(1V) is a curve in the domain
V=o(V)cR".

Definition 25. A path
on manifold M is continuous
mapping c:l1—M, where | /’
is an interval on numerical
line R. |
(P°C

\

According to the defi-
nition c is a path if and only T
if its coordinate representa-

tion
c=¢@oc:I>R"

is a path (figure 20); c is dif-

ferentiable if and only if ¢ is fig. 20
differentiable.
If (x%,x%...,x") arecoordinates defined by some map, than equations of a

curve y insuch coordinates coincide with equations of y in R".
Remind that a path  c:1—>R" is called regular, if c'(t)=0 forall tel. If

the path is regular and differentiable of the class C*(k=1,2,...,0), we say that it
is smooth of the class. C.

§5. Tangent vectors

Definition 26. Let M be a differential manifold, peM and (V,p) be a
map defined in the neighborhood V of the point p. Suppose that function
f:V—=R s defined in the domain V and curve y goes through point p. Let
c(t) bea parametrization of the curve and p=c(t,). Then the derivative of func-

tion f along the path c(t) is the derivative of function f along the path ¢(t),
e

[F (O] == FEON k=t
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(poC 'F fO

fig. 21

Let (x%,%?,...,x") be coordinates, that are defined by the map on V. We
consider that

of of
o X XDp = =7 (X5, LX) o)

OX

(we denote coordinates on V and coordinates on V. in the same way).
Let v, vy, c(t) and c(t) be the same as in the previous paragraph. Let
X~:6’(t) be the tangent vector to path’ c(t) at point ¢(p). We know, that the de-

rivative of the function f in the direction'of vector X is equal

X f=[FE()]}t=t,. (7)

If M were a surface in the Euclidean space, then we could consider tan-
gent vector X to path ¢(t) atpoint p, and could define the derivative in the di-
rection of vector X. But our manifold M is not embedded anywhere. Therefore
we can define vector X abstractly through its property to differentiate functions.

Remind, that two functions are called equivalent at point p if they coin-
cide in some neighborhood of point p.

Definition 27. The set of all functions which are equivalent to function f
are called the'germ (pocmox) of function f at point p.

Define &M the set of all germs of differentiable functions at point p. In
other words, &M consists of all functions, that are defined in some neighbor-
hood of point p, taking into account, that we identify equivalent functions.

By the way, if we consider analytic functions only, then the germ of func-
tion f consists only of one function f.

Definition 28. Tangent vector X to manifold M at point p is a map-
ping X:&,M—R that has the following properties:
1. X(af + bg) =aXf +bXg (linearity);

19



2. X(fg)= Xf-g+f-Xg
Va,beR, Vf,ge§M.
In other words, a tangent vector is a mapping that behaves like differentia-

tion. We can say, that tangent vector X acts on functions, but we must add the
property, that vector acts in the same way on equivalent functions.

Definition 29. We say that vector X is tangent to the path c(t) at point
p=c(ty) if Xf=[f(c(t))]'|t=1, forany fe&M. We write, that X=_c'(t).
Definition 30. The set of all vectors tangent to all the paths, that goes

through point peM s called the tangent space to the manifold M at the point
p. We denote it T,M.

We can define linear operations on tangent vectors from one tangent space
as follows. We write Z=X+Y if Zf=Xf+Yf vfe§,M, and we write Z=oaX
if Zf=a(Xf) Vie&M.

According to definition 26 [f(c(t))]'|t=t,= [f(C(t))}'|i=t, and according
to formula (7) f(C(1))'lt=,=X flo), Where X=c'(t). Finally we get

Xf=[f(c()]'lt=1=[F(CON h=t= XT. (8)
for any fe &,M. It means, that there is correspondence between tangent vector X

to path c(t) and tangent vector X to path: c(t). at point o(p). Taking into ac-
count properties 1 and 2 after definition 11, we can say that this correspondence
is linear.

Definition 31. Two paths c(t) and d(t) that goes through point peM

are called egivalent at point 'p, if paths ¢(t)=o(c(t)) and d(t)=e(d(z)) are
equivalent at point ¢(p).

Suppose that -¢(t). and d(t) are equivalent at point p, p=c(t,) =d(1),
X=c'(t,) =d’(10)). Then

Fe®) ==L FEWN] k==X F=[F(d(@)] | == F[A(@) |e=

We see that equivalent paths on the manifold define the same operator of differ-
entiation, i.e. they define the same tangent vector.

Let's assume that point p has coordinates (xZ,x2,...,xJ") relative to map
(V,@): It means, that the same coordinates has point ¢(p). Consider a straight
line I in R", which is defined by parametric equations

{x=x}; xI=0, j=i.

It is called coordinate line x', which goes through point ¢(p). Then o¢(I) is
called coordinate line x', which goes through point p. We say, that the set of all
coordinate lines in domain V forms the coordinate net in V (figure 22).

20



It is easy to prove, that the deriva-
tive of arbitrary function along the coordi-
nate line X is equal to of/ox. That is
why the tangent vector to coordinate line
X at point p we denote as o/ox or as Xi.
So,

xt=Z)=2. @

Definition 32. We say that vectors
(oloxt, eloxt, ...,olox™) form the coordi-
nate basis or basis of coordinate vectors
in the tangent space T,M. fig. 22

Let’s prove, that

(oloxt, olox?, ..., 6lox™) (10)

is really a basis. This will prove, that the dimension.of T,M is equal to the di-
mension of the manifold itself. We must prove, that any vector XeT,M can be
expanded in system (10) and this system is linearly independent.

According to formula (8) Xf=Xf. Suppose, that (al,a? ..., a™) are
coordinates of vector X. It means, that
X= ole; + 02+ .. .+oMep,
where (e1,e»,...,em) is abasis in/R™. According to definition 11 and formula (9)
vr IRRCLEpINC. R of 10 0 m_0_

=1 — o= 2.9
f—axloc FoE T Sma —ocaxlf +o 8X2f +... 0 mef_
Thus
Xf:if:al&f +OL2&+...+0Lmaxim=((x1§+a2&+_” am(ﬁTamjf'
It means that
0 0 0
=ol= 2— m_Y_
X—OL 6X1+a 8X2+,”+(X axm_

Why system (10) is linearly independent? Simply because %sz 8l

(Kronecker delta), i,j=1,2,...,m.

Exercise 7. Give the detailed proof that system (10) is linearly independ-
ent.

§6. Fiber bundle

Remind, that direct or Cartesian product of two sets X and Y consists of
all ordered pairs of elements: XxY={(x,y)| xeX,yeY}.
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Suppose now, that (X,71) and (Y,t) are topological spaces. We can in-
troduce topology © in XxY in the following way. Subbase of t consists of sets
UxV such that Uerty, Vet We will submit examples below.

Definition 33. Topological space (X,t) is called a fiber bundle (or a fi-
bration (paccimoenne)) over base M with fiber F, if M and F are topological
spaces and each point peX has neighborhood U, which is homeomorphic to
UxF, where U is adomain in M. Such neighborhood U is called tubular.

Definition 34. A fiber bundle is called trivial, if X is hameomorphic to

MxF. e -
Examples 11. The cylinder (infinite $ R )
one) is trivial fibration S!xR (figure 23). \0_/
12. Mobius band is fibration over base A 7 N
St with fiber | (or R if it is infinite).This st
fibration is not trivial (figure 24). >"———<
/
13. Torus is trivial fibration S!xSt \
(figure 25). \“—/
fig.23
5 2
| N ! \ S — ’ st
\—\ v
fig.24 fig.25
Definition 35..The projection of fiber e ;
bundle X on base M is called mapping | S 0.0) |
7. X— M, which acts by the following rule. i T ’ }
For any neighborhood U=UxF holds | lp Ui
~(U)=U and =(p;q)=p (figure 26). e |
Definition 36. Bundle cut of fiber I i
bundle X is such mapping of base M into
X o:M—X, that for any peM holds “l
o(n(p))=p (figure 27). p U
Bundle cut is kind of immersion or
embedding of the base into the fibration fig.26

(figure 27. The exact definition of such no-
tions we will study later.
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fig.27

Examples 14. Consider trivial fibration RxR={(x,y)| xeR, yeR}. Then
the mapping =(x,y) =x is the projection, o(x)=(x,x?) is a bundle cut, because
n(cs(xX)) =n(X,y) =x. Mapping o(x)=(2x,x?) is not a bundle cut.

15. In figures 23, 24, 25 we can see the result of action of a bundle cut —
the base embedded in fiber bungle.

Exercise 8. Make the drawing for o(x) in Example 9.

§7. Vector fields. Integral curves

Definition 37. A set TM= UM TpM is called a tangent bundle (xaca-
pe

TesbHOE paccioenue) of the manifold M.
We can introduce a structure of differential manifold on T,M. Let 4 be
an atlas on M. Then atlas .4 consists of such maps (V,¢) that

1. (V,9)ea, V)=V,

2. V=TV :pLeJV TpM (tubular neighborhood, each element of it is a pair
(p,Y), YeT,M);

3. §:V—VxR"@R™ according to the following rule. Let point p have

coordinates (x*,x?,:..,x"), and let Y=a1§+a2&+...+ocm & be a tangent

oxm
vector at point _p. Then-¢(p,Y) =(x}, %%, ..., x" al,a?,...,a™m).

It is important to emphasize here that tangent planes to a surface in 3-
dimensional space are located in the same space and can intersect. In the theory
of manifolds M is not embedded anywhere. Each tangent space is considered
separately and they do not intersect. We should note also, that tangent bundle of
a manifold is not always trivial, i.e. it is not always diffeomorphic to MxR".
With our definition of the atlas, the projection will be differentiable mapping
because in each map it will be defined by the formula

(x4 x?, ... xM ol a?, .., am)= (x5 X3, xM).

Definition 38. Vector field X on manifold M isacut X:M—TM, of
tangent bundle TM. Vector field X is called differentiable if this cut is differ-
entiable mapping.
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In other words, we can say that a vector field is a mapping that assigns to
each point peM a vector X,eTM, tangent to the manifold (figure 28).

At each point p, we can expand the
vector Xp in  the  basis
((01oxY)p, (010X?)yp, ... , (OIOX™),):

Xo= ol (A1OXY)p+ a2(BIOX)p + . .. + o"(BIOX™,.

Therefore, in whole, on the manifold we can \/_\

expand the vector field in basis vector fields:

0 0 o _& .0
—_ 1 2— m—~_ — —
X=alzitolsst. .. ta 8Xm_i§1a8xi'
And here (al,0?,...,a") are functions.
Proposition 1. A vector field X is differentiable of the class C* if and
only if all its coordinate functions are differentiable of the class C*.

Proof. A vector field X is defined by the formulas
X(p)=X(x4,x%, ..., x™M = (x4, %%, ..., xMal, 0, ...,am).

Therefore this mapping is differentiable of the class C* if and only if
al,a?,...,a™ differentiable of the same class.

A curve ycM s called the integral curve of a vector field X, if for any
point pey the vector X, istangent vectorto y.Integral path of the vector field
X issuch path c:1— M, that any 1, the vector Xct,)=c'(to).

Theorem 1. Suppose that'a vector field X is defined in some domain U
on a manifold M and X is continuous. Then for any point peU there is the
unique path c:1— U, which is the integral path of field X and c(0)=p.

Proof. Let (V,¢) beamap in some neighborhood of point p, which de-

—~ m
fines coordinates (X}, X3,...,x™), V=¢(V). Let X= Za'%. Consider vector
i=1
~ - - —~ —_
field X=> ole;i on V. Let c:1—>V be an integral path of vector field X in
i=1

domain V. Then Xcq,)=c'(t,) for any toel. The last equation can be rewritten
in coordinates:

According to the theorem of existence and uniqueness of the solution of system
of differential equations this system has a unique solution, if the initial data

c(0)=(x,xZ,...,x,") are given. They are coordinates of the initial point
p(p)eV.
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Consider a path c=¢*oc:1—>V on a manifold (figure 21). Then ¢ is
determined by the same equations in the internal coordinates and X is deter-

mined by the same coordinate functions as X. Thus ¢ is the integral path for
X.

At last, if domain U does not fit in one coordinate neighborhood; we can
prolong path ¢ from one neighborhood to another and so on by the chain of
neighborhoods. =

Knowing what is the derivative of a function f in the direction of a vector
Xy IS, we can determine the derivative of the function f in the direction of a
vector field X: (Xf),=X,f for any point p from the domain, where f and X
are both defined.

Apart of this there is one more operation for vector fields: Lie bracket or

commutator
[X, Y]=XY-YX.

l.e. we write Z=[X,Y], if for any function f holds  Zf=X(Yf)-Y(Xf). Here
Xf and Yf are again functions and we can consider their derivatives by another
vector field.

Properties of this operation.

1. [X+Y,Z]=[X,Z]+]Y,Z];

2. [aX,Y]=a[X,Y];

3. [V, X]=-[X,Y];

4. [X,IY, Z]]1 + [Z,[X, Y]] + [Y.[Z, X]] = 0 (Jacobi identity, here 0 — zero vec-
tor field).

Denote 8M the set of all differentiable vector fields on a manifold M.

Definition 39. A manifold M of the dimension m is called paralleliza-
ble if there exist m vector fields Xi, X, ..., Xn on M, which are linearly inde-
pendent at each point,i.e. they form a basis in tangent space at each point of the
manifold.

Examples 16. The cylinder S!xR! is a paral-

lelizable manifold. We can choose X; along paral- Rl VN

lels and X; along meridians (figure 29). Moebius

band.is not parallelizable. ﬂ—__éxi/
17. $? and S* (k=1,2,...) are not paral- //1 IO

lelizable. It is impossible to introduce even one dif- S\‘ >/

ferentiable vector field on even-dimensional sphere, ) SN

which has no singular points. S%-! (k=1,2,...) are

parallelizable. K—J
Let o/ox' and o/oxt i,j=1,2,...,m be coor- R

dinate vector fields on coordinate neighborhood V _
and f be arbitrary function of the class C2. Then fig. 29
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Pf
oxiox — oxoxt

Thus

2 2
[g@}f o A A _g

X1’ Ox &&f &&f oxioxi  oxiox

Since f is arbitrary function we get

ox'' ox
The question naturally arises: whether this implies [X,Y]=0 for any vector

fields X= i(x . and Y= i[?)'—'? Let’s check.

[X’Y]f:Li;‘ai%’.iﬁaxJ [ial_J (iﬁaxlj (iBEﬁXJ (ial_j

=3 O‘i% (,Z p axJ ,i BJaxl [Z N\ j

1

N I N SN S, aaafn al
—izzlloﬂj; 5Xi Xj+iZ::1j§MXj J:1B 1(3XJ 8X' le|z i=1 J@Xi_

opl o Goc 8}
| —
:1((1 oxi oxd ~Pax oxi ox )

[Q_ i}:o (zero vector field).

Thus

4 I_]?)_ 8(1 0
[X’Y]_( Xt ox Baxl ij

Definition 40. If [X,Y]=0; then we say, that vector fields X and Y
commute.
If both X and_Y have constant coordinates, then [X,Y]=0. Constant

coordinates is sufficient, but not necessary condition for commutation of two
vector fields.

§8. Tangent mapping

Definition 41. Let M and N be differential manifolds of dimensions m
and.-n. Let' f be differentiable mapping of class C?, which is defined in the
neighborhood of point peM. Let q=f(p). Let XeT,M and let c(t) be a path,
that goes through point p, p=c(0), such that X=c'(t,). Let d(t)=f(c(t)) be a
path in. manifold N and Y=d'(t,) (figure 30). Consider a mapping
(f)p: ToM—TgN, which acts by the rule: (f),X=Y, i.e. if X=c'(t,), then
(f.)p X=d'(t,). This mapping is called tangent mapping to f at point peM or
differential of mapping f at point p. If we remove connection to a point, we get
mapping of tangent bundles: f,:TM— TN, which is called tangent mapping to
f.
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fig. 30

Suppose now, that coordinates (x*,x?,...,x™) are.introduced in some
neighborhood of point p and ((6/6xY)p, (0/0X?)p, ... , (010X™)p). e the basis in
TpM, which determines coordinates (al,0?,..5a™). Analogously, let
(yLy%...,y") be coordinates in a neighborhood of .point \q and (B!,B%...,B")
be coordinates in TqN determined by basis ((alayl)p,(aléyz)p,.. , (010y™)p).

As we already know, mapping f is determined. in coordinates x' and y!

by the same formulas as its coordinate representation f :R™—>R". Let J Jaco-
bi matrix of mapping f. In terms of coordinates (ol 02 ...,0™) and

(BL,B?,...,B" f is linear mapping and determined by matrix J.
In details, if

are equations of the mapping f, then

o otto oo o" 3
K Woxt = axiayt oxioy T T axiay

o _oft o af 0 of" o
Lo o= axmayt + axmay2 T T axmayn

In brief,

o .
(f)p[axj Zax.ayj,l—l,2,...,m

§9. Submanifold

Definition 42. Let M and N be differential manifolds of dimensions m
and n. Differentiable mapping f:M—N is called immersion (norpyxenue) if
for all peM differential of this mapping (f,)p: ToM— T¢N is injective map-
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ping. Injectiveness of (f,), means that matrix of this mapping has rank equal
m. Of course it is possible only if m<n.

Definition 43. An immersion f:M—N is called is called an embedding
(Bmoxxenue), if f homeomorphically maps M on its image f(M)cN.

Example 18. Let F be elementary surface and r:U—FcR? is its par-
ametrization. Then according to the definition r homeomorphically maps U
on F. But it is not sufficient to call r embedding.

Let peU, g=f(p)eF. As usual we denote coordinates on U as (u,v)
and coordinates in R® as (x,Y,z). In coordinates we have equation of the sur-
face x=ri(u,v), y=rz(u,v), z=rsu,v).

Matrix of mapping (r,),: ToU — T4R® (figure 31) is

J:(m)'u (r2); (rg)zj
() () (ra)y)
Condition rankJ=2 is equivalent to

r'xri=0.  Parameterized  surface
r:U—FcR® is called regular just if it

holds r/xri=0 for all p(u,v)eU. It
means that f is immersion if and only
if it is regular parameterized surface./In
this case it will be even embedding. I.e.
r as if embeds domain U into R® and
bends it at the same time.

Example 19. Let M=R and fig. 31
M=R2 Consider mapping
f(t) = (cost, sint) (figure 32).
This mapping is immersion
since its differential has ma-
trix

J=(-sint, cost). f o
RankJ=1 forany teR. — /\

This mapping is not em-
bedding, because f(M)=S!
IS not homeomorphic to M.

For the same reason
mapping of the plane in R3

f(u,v) =(cosu,sinu,v) (9)

(figure 33) is immersion,
but not embedding.

\

fig.32
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fig. 33

Exersises 6. Find Jacobi matrix of mapping (9) and prove, that its rank
is equal 2 for all (u,v) e R?
7. Prove, that the mapping c:R—>ycR?® " acting by the formula

f(t)=(a-cosu, a-sinu,bv), ab=0, is embedding: Remember the name of the
curve that is obtained as a result of this embedding.

Example 20. Mapping
f:R—>R? f(t)=(t*1%) (figure AY
34) has image ‘“‘semiqubical pa-
rabola”. It is homeomorphism, f
however its Jacobi matrix

J=(2t,3t?) has rank equal zero
at point t=0. Thus this map-
ping is not immersion.

For the same rea- R?2
son mapping of the plane
in R
f(u,v) = (2u,3u? V)
(figure 35) is not immer-
sion. AV

Exersise 8. Find
its< Jacobi -matrix and ;
prove, that its rank is
equal . 2  for all
(u,v) eR%

V<

fig.34

\ 4=
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If manifold M is contained in manifold N we can consider M in two
ways: as itself and as a part of N (figure 36).

fig. 36

Therefore the following definition makes sense.

Definition 44. Let M and N be differential manifolds. If M is part of
N and mapping of inclusion i:M— N is embedding, then is called differential
submanifold in N.

This definition allows us to discard. such cases as semiqubical parabola
and the cylinder on it. This manifolds are not differential submanifolds in R?
and in R3 respectively. But if we consider semicubial parabola “by itself”, it is
arranged as the line R, and the cylinder on semicubial parabola “by itself” is ar-
ranged as the plane R2. For a submanifold to be differentiable, it is not enough
that it is differentiable “by itself”. We need to embed it smoothly in the envelop-
ing (oowemitromiee) manifold.

§10. Tensors

Definition 45. Tensor of type (r;s) (r,s=0,1,2...) inspace R™ is pol-
ylinear mapping

T:R"R"x .. xR" >R"xR"x ... xR

J - J

g g
r times s times

(i.e. T is function of r arguments, each of them is a m-vector, and function val-
ue is.ordered set of s m-vectors) which is linear in each argument:

T(Xe, oo, Xty oo XD =TXe e, Xy e X+ T(Xe o, Vi o X (9)
T(Xe, .. 0Ky o, XD) = 0T(Xa, o, Xiy o, X0) (10)

In tensor algebra, it is customary to dispense with the summation sign by
using indices of two levels: upper and lower ones. For instance, the following

- m - - - - m - -
notation a'e; means »_a'ej, and notation gja'! means 2. gia'b. The value, up
i=1 i,j=1

to which the summation is carried out, is assumed to be known.
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In the future we will come across tensors with r<4, s<1 only. Therefore
all the definitions below will be given for tensors of these types only. The set
R™xR™x...xR™ zero times is a scalar (a number).

Definition 46. Suppose, that a basis (e, e2,...,e,) isgivenin R™. Let T
be a tensor of type (3,1). Then we can write T(ej, &j, &) =Ti'jke|. The values Ti'jk
are called components of the tensor T in the basis (i, €., ...,en). If R is a ten-
sor of type (4,0), then R(e;, &, €, €1) = Riji-

Components of the tensor gives us possibility to calculate tensor value on
any vectors. For instance,

T(X,Y,2) =T(Xe;, yle;, 2ex) = Xy/ZT (e, &}, &) = XYIZT 8-
Analogeously,

R(X,Y, Z, U) =xyiZ*uR(e, &j, &, €1) = XYZ“URjjx.
Let A=(al) be the matrix of a linear transformation A:R™ —>R™, i.e.
Aei=ale;.
and let B=(b])=A"t. Consider be the new basis, which is made of vectors
Aei, Ae,, ..., Aen. Then the transformation rules of tensor components ar

, C =\l |
Tie=aparac Tl apatay
ik
Rijx1= ail’ajj’ak'al’Rijkl-
Definition 47. We say, that T is a tensor field on a manifold M if at each

point peM T, is a tensor determined in-T,M and (9) and (10) are true for any
vector fields and any function o on M.

§11. Connectivity.on manifold or covariant derivation
Definition 48. Let X be a
vector field on manifold M and
peM. Let c(t) be integral path of
the vector field . X, .which goes
through p <and p=c(0). Let
q=c(t,). Consider transformation
®y,: M—>M, ~which maps each
point p to.the point g as de- fig.37
scribed above. We say, that @y, is
the local flew of the vector field X.

This transformation has the following property: (®t,.)pX, = Xq, i1.€. this
transformation maps vector field X in itself (figure 37).

In Euclidean space we can easily compare two vectors, which have differ-
ent initial points. We can translate one of them at initial point of the other. We
can’t do in the same way on a manifold. If vectors are tangent to the manifold at
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different points, then they are located in different spaces. However it gives us an
opportunity to perform something like translation and map one tangent space on
the other.

Let peM, r=d(p)=-c(t;). Then D (r)=p. Let Y,eT,M and
Yp=(Dr.)rYr. Then we say that Y, is obtained from Y, by parallel translation
along vector field X or along the path c(t).

This operation gives us opportunity to define the derivative of vector field
Y along vector field X:

Yp— (Pr)rYr
t ]
where r=® ¢(p). This derivative is called Lie derivative of the vector field Y
along the vector field X. We accept without proof, that
LxY=[X,Y].

But translation defined in this way is not very well. It turns out that the re-
sult of the translation and Lie derivative depends not only on the value of vector
field X along path c(t), but on its value in the nearest neighbourhood of the
path. We can define the translation more correctly, but this method is less con-
venient, then than formal description.

Definition 49. Let M be differential manifold. Linear connectivity or co-
variant derivative on M is mapping V:8Mx3M— @M, written as Z=VyY
(covariant derivative of vector field Y along vector field X), which has the fol-
lowing properties:

1. Vx(Y1+Y2) =VxY1+ VxYy;

3. Vxg+x,Y = Vx Y+ Vx,Y;

4, foY:f-VxY.

We shell notice, that LxY has all the properties, except 4, therefore it
does not fit this definition.

Let X;=0/ox" be coordinate vector fields in some map. Let

inXj :Fﬁxk.
Then functions I'f; are called the components of the connectivity in the map.

Definition 50. Tensor

TOXY) =VxY —-VyX—[X,Y]
is called the torsion tensor. We say, that a connectivity has no torsion, if
T(X,Y)=0.

Equality T(X,Y)=0 means that [X,Y]=VxY-VyX.

Suppose, that a connectivity has no torsion. Then for any coordinate vec-
tor fields holds

Y=l
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0=T(Xi, X)) = VxXj— VxXi—[Xi X] = TEX~TEXy <
o TEX=TiXe Vij=1,2,...,m.
Since coordinate vector fields are linearly independent at each point, then
ri=rf vijk=12,..,m, (11)
And vice versa condition (11) implies T(X; Xj)=0 = all the components
of this tensor are equal zero = T(X,Y)=0.

Let T(X;, X)) =T#X«. Then
Definition 51. Let M be a differential manifold, c: 1 =M be a differenti-

able path. Let X=c'(t) be a vector field along c. Then vector field Y is called
parallel along c, if

VxY=0. (13)

Theorem 2. Let p=c(t,) and Y,eT,M. Then there exists one and only
one vector field Y along c, which is parallel along ¢ and Y,=Y,.

In the proof of this theorem, equation 2 is reduced to differential equation
and theorems on the existence and uniqueness.of the solution are used.

This theorem means, that the
parallel translation of a vector along
the path is uniquely defined by the
connectivity. Specifically, if
YoeToM, p=c(t;) and we want to
translate Y, to the point q=¢(t),
then we construct vector field Y,
which is parallel along c(t) with ini-
tial condition Y,=Y, and then Y, is
the desired result (figure 38).

Let Y bearbitrary vector field
along ¢, Yo=Yy, p=c(to). Denote Y
vector obtained by parallel translation
of vector Y¢g to point p. Then the
following theorem is true.

YO-Y, fig. 39
t—to
So, the covariant derivative is defined by a completely natural formula,
similar to the definition of the ordinary derivative of a function (figure 39).

Let c(t) be a piecewise smooth path. Then parallel translation is defined
as sequential translation along each of the smooth pieces (figure 40).

Theorem 3. VXY|pztlm

33



Definition 52. Let B be
a tensor of the type (r,s) on a
differential  manifold M,
s=0,1. Then covariant deriva-
tive of the tensor B along a
vector field X is defined as a
tensor of the type (r,s) by the
following formula: fig. 40

(VxB)(Yl, - ,Yn) = Vx(B (Yl, - ,Yn)) + Zr: B(Yl, v, VY, ,Yn) (14)
i=1

If s=1,then B(Ys,...,Yn) isa vector field, but if s=1, then it will be a
function. Therefore we must make a reservation (cmenatb oroBopky) that in
formula (14) Vxf means Xf.

Definition 53. The covariant derivative of tensor B of type (r,s) is
called a tensor VB of the type (r+1,s), which is defined by formula
VB(X,Yl,...,Yn):(VxB)(Yl,...,Yn).

Definition 54. A tensor field B is said to be parallel on M if VB=0.

If B has the type (0,0), then B isa function f and by VB we mean df — dif-
ferential of the function. According to this definition df is a tensor of the type
(1,0) and
df(X)=Vxf=Xf.
|.e. the differential of a function assigns to each vector X the derivative of
the function in the direction of the vector X. Condition df=0 means that for
any vector field X holds Xf=0 and it means f=const.

If B has the type (0,1), then it is a vector field Y and the condition
VY =0 means that for.any vector field X holds VxY =0, i.e. Y is parallel along
each vector field. In general, there are no such fields on an arbitrary manifold,
but on the flat manifold R™ such vector fields are constant fields.

§12. Geodesic lines. Exponential mapping

Definition 55. A differentiable path ¢ on a manifold M is called geo-
desic, if

Vec'=0. (15)

I.e. if'its tangent vector field X=c’ is parallel along c. A curve y in the mani-

fold M is called geodesic, if it is the image of geodesic path. A regular path ¢
iIs called pregeodesic, if its image is a geodesic curve.

Remind, that two paths c:1—-M and d:l;—M are called equivalent, if
there is a regular change of the parameter ¢: 11— 1, such that d=co¢ (t=¢(7),
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d(t) =c(p(t))). Equivalent paths have the same trajectory, but have different pa-
rameters.

Let (V,p) beamapon M, X;=0/ox' be the coordinate vector fields and
Il be components of the connectivity on M. Denote T'fi(t) =T |cq. Let

X1 =c(t), ..., Xm=c"(t)
be coordinate equations of the path c. Then

CO=(CH) o+ .. + (€0

Further on we will denote differentiation by dot. In classical differential geome-
try the dot usually means differentiation by natural parameter..\We have

Ve€ = Vc’iXiCij =¢ inCij =¢! (CJ VxXj+ (XiCj)Xj) =¢' ¢ l"iijk + ((CiXi)Cj)Xj
Let’s replace in the second term blind index j on k_.and equate to zero:

(¢ I T +ec)X=0.

Since vectors are linearly independent, it holds for any k: ¢'¢IT+(¢c¥) =0.

According to the definition, Cf:%f(c(t)) = cck=¢X Thus, finally we get the
equation
¢k +¢dTE=0,k=1,2,..,m. (16)

These are equations of geodesic path in coordinates. This is a system of differen-
tial equations of the second order. According to the theory it has unique solu-

tion, if the initial data are given; ¢%(0)=x¢, ¢“(0) =VX. It means, that there is one

and only one geodesic path, which satisfies initial data c(0)=p, ¢(0)=VeT,M.
Therefore the following theorem is true.

Theorem 4. For any point peM and for any vector VeT,M there is
one and only one geodesic path c:1— M outgoing from point p in the direc-
tion of vector V.

The previous reasoning proves the unigueness of the geodesic line

within one coordinate neighborhood
U. If we want to prolong this path

further-on in coordinate neighbor- M

hood = U;, we shell take a point %’&

q=c(t)eUNU; and the vector /
M

Y =¢(t1); they uniquely determine \/—\

the continuation of the path in the
next coordinate neighborhood and fig. 41
so on (figure 41).
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But this reasoning doesn’t mean, that fi-
nally we will get the path which domain of def-
inition is the whole numerical line. For instance,
semiplane is also a manifold. Geodesic lines on
it are straight lines. But there are lines, which
we can’t be prolonged in such way, that their
domain of definition will be R (figure 42).

Definition 56. Linear connectivity on a
manifold M is called full, if each geodesic path fig. 42

can be prolonged to the geodesic path, determined on the whole R. A manifold
M with full connectivity is called a full manifold.

Let M be a differential manifold, peM, XeT,M. Let ¢:1—M be a geo-
desic path such that c(0)=p, and let qg=c(1). Consider the mapping
expp: TpM— M which assigns to each vector XeT,M.a point geM, according
to the rule described above.

Definition 57. Such mapping is called exponential mapping of the mani-
fold M at the point p.

If the manifold is full, then exp, is.defined on the whole T,M. If the
manifold is not full, then it is possible, that exp,(X) is not defined for some
vector X. This mapping may be not injective (i.e. it is possible, that
exp, (X) =expp (Y) while X=Y) and may be not surjective (i.e. it is possible, that
image of this mapping is not whole™ M). We will see some examples later. But if
we consider neighborhood V of zero vector in T,M, which is small enough,
then the reduction of exp, on this neighborhood will be a diffeomorphism. In
particular it means, that there is a neighborhood W of a point p, such that any
point geW can be connected with p by the unique geodesic line. And here is
an explanation why.

For the system of differential equations (16), we can set the boundary val-
ue problem: c(0)=p, c(1)=q,i.e. c(0)=xs ck(1)=x{ k=1,2,...,m. Accord-
ing to the theory of differential equations this problem also has unigue solution,
if p and g are.in sufficiently small neighborhood. However, on the manifold
as a whole, geodesic line connecting two points
may not exist or may not be unique.

Example 21. On the sphere S? geodesic
linesare big circles. Two arbitrary points (fig-
ure 43) can be connected by two geodesic lines,
and diametrically opposite points can be con-
nected by infinite number of geodesic lines.

Example 22. On the cylinder S!xR geo-
desic lines are those lines, that are depicted on
the surface development as straight lines. These fig. 43
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are circles, ruling lines and helix lines. Two arbitrary point on one circle can be
connected by two geodesic lines and two arbitrary points, which are not located
on one circle can be connected by infinite number of geodesic lines. We have
drawn three of them (figure 44).
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fig. 44
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Chapter 2. Riemannian manifold

§1. Definition of Riemannian manifold

Let M be a differential manifold. Let’s determine in each tangent space

TpM, peM a scalar product of vectors X-Y. Let X=a Y= [3— Then

ox’
XY= oip-d -2 = giolp)
o ox — Jiep
Here we denoted

0 0
gij:ax.‘ X,,I,J—l 2,

This scalar product is usually denoted in the following way:

gp(X)Y) or (X,Y)p.
The function g,:TyMxT,M—R is a tensor of the type (2,0), defined in vector
space T,M and g; are its components.

Definition 58. This tensor is called the metric tensor of the manifold M at
the point p. If we avoid connection to the point, we will get so-called the metric
tensor field g on M and its components @i will be a functions. Nevertheless it
iIs common practice to call this tensor field the metric tensor on M.

Definition 59. A manifold M ‘with a metric tensor g is called the Rie-
mannian manifold. We denote it (M, g).
For brevity, the metric tensor is simply called the metric.

The metric tensor g(X,Y) satisfies the following conditions.
1. 9(X,Y)=g(Y,X);
2. g(X+Y,2)=9(X,2)+9(Y,2);
3. g(aX,Y)=ag(X,Y);
4. g(X,X)>0and g(X,X)=0 < X=0
VXY, Ze®3M and YV aedM.

Conditions 1 and 2 are included in the definition of a tensor. Condition 1
IS symmetric property and 4 means that the tensor is positively definite.

The metric tensor allows us to define the length of a vector:

[IXpll =\ {Xp, Xpp

and the angle between two vectors:

(03
Xp, Y
c0s Z(Xp, Yp)= (7;)_5_);)_ : P
[IXplHIY ol N
The angle between two curves is
the angle between their tangent
fig. 45
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vectors at the point of intersection
(figure 45).
Let c(t) be a differential path on the manifold M, c:1—>M and t,,t;<l.

The length of the path ¢ from t=t, to t=t; is called the value
t1

L(tot)=] e dt. (a7

If ||C(t)[|=1 the path is called normal. In this case formula (17) implies
L(to,tl)zltl—to|.

Theorem 5. On each differentiable manifold, we can define the metric
tensor, i.e. any differentiable manifold can be turned into-a Riemannian one.

Definition 60. Let M and N be two Riemannian manifolds and
f:M—N be differential mapping, peM, q=f(p)eN. Mapping f is called iso-
metric at point p if

K Y)p=F.(X),£.(Y))g ¥V X, YeTM

(figure 46).Mapping f is called isometric (or isometry) if it is isometric at each
point peM.

f, :
—_—
O
™ Y
I\/I/
—
fig. 46

It is obvious that an isometric mapping preserve the length of a vector, the
angle between vectors, the length of a curve, i.e. it preserves everything, what
can be calculated with the help of the metric tensor. In other words, isometric
mapping preserves the internal geometry of the manifold.

§2. Riemannian connectivity

We have defined the connectivity, defined the metric but haven’t defined
connection between them. Naturally only those connections are of the interest
that agree with the metric.

Definition 61. Linear connectivity V on a differential manifold M is
called the Riemannian connectivity, if for any differentiable path c:1—-M and
for any vector fields X, Y, which are parallel along c, function (X,Y) is con-
stant along c.

If a linear connectivity is Riemannian, then parallel translation of vectors
from ToM to T¢N (p=c(ty), q=c(t1)) is isometric mapping of tangent spaces.
In particular, function ||X|| is constant for parallel vector field X.
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If c(t) is a geodesic path, then ¢ is parallel along c, and it means, that
|IC|| is constant. If X is also parallel along c(t), then both || X]|| and (¢, X) are

constant = co0sZ(¢,X) is also constant. Therefore a vector field, which is paral-
lel along a geodesic curve y forms constant angle with tangent vectors to y and
has constant length. This reasoning shows that our definition of Riemannian
connectivity is natural.

Theorem 6. Let M be Riemannian manifold and V be a linear connec-
tivity on M. Then V is Riemannian connectivity, if for any vector fields X,,
Z on M holds

ZX,YY=(VzX,Y) +(X,VzY). (18)
It is full coincidence with the rule of derivation (without proof).

Definition 62. Among all Riemannian connections on a differentiable
manifold, stands out one that is torsion-free, and it is called the Levi-Civitta
connectivity.

According to the definition the Levi-Civitta connection must satisfy (18)
and T(X,Y)=0 <

VxY =V X+ [X, Y] (19)
From formulas (18) and (19) we can derive

(VzX,Y) = %{X<Y, Z) +Y(Z,X)=ZXX) +(Z,[X,Y]) + (Y, [Z,X]) —(X,[Y, 2] }. (20)

If we take coordinate vector fields X, X;, X« instead of X, Y, Z, then taking into
account [X;,Xj]=0, we get

1
(VX Xy = 5 LXK X+ XX Xi) — X0 X3, X (20)
Remind that inszl“i'jxh {Xi, X;) = gij, and Xifzaa—;. Thus (20) is equivalent
1(0gjk , OQki  OQij ,
=33 - @)
: o ogi o :
The following notation is common used: ok = Giik: Using it we obtain

1
galij=75 (Gjki * G — Gii ). (20")

We know, that det(gi) >0, that is why there is the inverse matrix (g;) .
We denote elements of this matrix as g'. Remind, that (g;) (i) !=E and ele-
ments of unity matrix are Kronecker symbols. Thus g™gu=3/. Because §' is
equal to O in all cases, except n=I, when it is equal to 1, then, for instance, in
the sum §'T,, all terms are equal zero, except T.

Let’s multiply (20”) by inverse matrix (g").

40



n 1 n
SIT5=5 9"™(Giki * Giij—Gii)-

n 1 n
Ij=% 9™ (ki * 9 —Giix)- D

This formula shows, that the Levi-Civitta connectivity is totally determined by
the metric.

Let M be a Riemannian manifold with the Levi-Civitta connectivity,
peM, XeT,M. Let ||[X||[=a and let c:[0,1]—>M be a geodesic path such that

c(0)=p, ¢(0)=X. Let g=c(1)=exp,X (figure 47). And at last, let X;=c(t) be
the tangent vector field along c. As we have noted above, ||Xt||=a=const.
Therefore

1 1

L(0,2)= [[IXldt= [adt=a=]|X].
0 0

fig. 47

So, the length of geodesic path, that connects p and q=exp,X isequal ||X]|.

Geodesic path with initial data c(0)=p, ¢(0)=XeT,M can be defined as
c(t) =expptX. For instance; ¢(2) =exp,2X. We get mapping of the ray tXcT,M
on the geodesic line vy, which is image of the geodesic path c(t). We proved,
that the length.of vector tX (it is the same as length of the part of the ray) is
equal to the length of geodesic segment from c(0) to c(t). Therefore, the expo-
nential map is said to be radially isometric, i.e. it isometrically maps ray tX on
the geodesic line. However, it should be noted that it is true only within some
domain VcT,M, such that reduction expy|v is one-to-one mapping. Outside
this.area it may turn out that exp,0X=p=exppt,X for some t,>0, i.e. geodesic
line can come back to point p (like on the cylinder, for instance).

§3. Curvature tensor
Definition 63. Denote
R(X, Y)Z - VxVYZ— VnyZ— V[xy]z .
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This value is a tensor (without proof) of the type (3,1) and it is called the curva-
ture tensor of the connectivity V or the curvature tensor of the manifold M
with the connectivity V.

When we consider a surface in Euclidean space we can estimate its curva-
ture looking on its form, or we can estimate how quickly the direction of normal
vector changes while moving along the surface. Our manifold is not embedded
anywhere. Therefore we need to find a way to measure curvature without going
beyond the manifold. Imagine the task: to measure the curvature of the'space in
which we live.

It turns out, that curvature tensor is a measure of the dependence of a par-
allel translation on the path along which this translation is carried out.

Let peM, X,Y,ZeT,M and let (V,p) be a map in the neighborhood of

point p, V= ¢(V). Consider a square Q with a vertex ¢o(p) and with the side
equal t, which fit in the neighborhood

V, such that vectors X and Y are tan-
gent to the sides of curvilinear rectangle

Q=9 YQ)cV (figure 48).

Let’s perform consequently the
parallel translation of vector Z along
the sides of Q. When we come back to
p, we will get another vector Z'. It turns

out, that
t_7 o(p)

VAR
— Rm
Ro(X,Y)Z=lim = (21)

(without proof). fig. 48
If M is the Riemannian manifold, than we can consider the Riemannian curva-
ture tensor of the type (4,0):
R(X,Y,Z,U)=(R(X,Y)Z,U). (22)

Theorem 7. Properties of the curvature tensor and the Riemannian curva-
ture tensor. For any vector fields X,Y,Z, U on M holds

1. R(X,Y)Z=-R(Y,X)Z;

2. ROGY)Z+R(Y,Z2)X+R(Z,X)Y =0;

3.R(X,Y,Z,U)=—R(X,Y,U,2);

4. R(X,Y,Z,U)=R(Z,U,X,Y).

Without proof.

We can define components of this tensors.

R(Xi, X)X« =Ri$X;
R(Xi,Xj,Xk,X|) = Rijk|.
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Consider a value ki(X,Y)=||X[||IY]|-¢X,Y)?. If X,Y are vectors in R™, then it
Is equal |XxY]|, i.e. it is equal to the area of the parallelogram constructed on
vectors X and Y. Since T,M isalso R™, thenitistruein T,M also.

Definition 64. Let X,Y € T,M be linear independent. The value
gx Y, Y, X)
is called the sectional curvature of the manifold M at the point p.in the direc-
tion of two-dimensional area element spanned on vectors X and Y.

Let o be two-dimensional space, which is defined by <X and Y. If we
take some other linear independent vectors Z,Uec then Ky(X,Y)= Ky(Z,U),
I.e. the sectional curvature depends only on the plane o, where vectors are lo-
cated, but doesn’t depend on vectors themselves. Therefore the notation

=Ku(X,Y) is often used.

If M is a surface in three-dimensional space, then its tangent plane con-
tains only one two-dimensional direction and the sectional curvature in this di-
rection coincide with the Gaussian curvature of the surface.

If [|X]|=]Y|| and (X,Y)=0, then k;(X,¥)=1 and

Ko(X,Y) =R(X,Y,Y,X) (22)

Definition 65. A Riemannian manifold is called a constant curvature
space if Ks=x=const for all two-dimensional spaces ccT,M. A manifold M
is called a hyperbolic space, if k<0, elliptic space, if k>0 and it is called flat,
if k=0.

It turns out, that if M is flat, then it is locally Euclidean, i.e. each point p

has a neighborhood, which is.isometric to a flat domain V<R™. An example of
elliptic space is the sphere S% and an example of elliptic space is the hyperbolic
paraboloid.

Remind, that the trace of a matrix is the sum of all its diagonal elements:

m
trA=ai+as+...+a"=>.al.
i=1

A linear operator has different matrixes in different bases. But the trace of the
matrix is invariant. For a tensor of the kind (p,1), we can define operation of
contraction of the tensor and get a tensor of the type (p—1,0):

|2 ip ZTkIZ i

If A is the matrix of a linear operator 4 in an orthonormal basis
(e1,€2,...,em), then a =(4e)-g. Therefore

tl’ﬂzi;(ﬂei)’ei Z(Za ex)-6i= Za Ok -

p’
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Analogously, the trace of a tensor of the type (p,1) is tensor of the type
(p-1,0): Tjkiz...ip Ok -
Definition 66. Ricci tensor is a tensor
R(X,Y)=trace{U— R(U,X)Y)}.
If basis (Ei,E»,...,En) isorthonormal, then

R(X,Y) = _iR(Ei,X,Y, E)= _im(a,xw, E). (23)

or
Rij=Rij
If the basis is not orthonormal, then
m
Rij: kleiljk Ok

According to the properties of the curvature tensor

R(Ei,X,Y, Ei) = R(Y, Ei, Ei,Xi) =—(—R(Ei,Y,X, Ei)) —

= R(X,Y)=R(Y,X),

I.e. the Ricci tensor is symmetric.

Definition 67. Value

_RiX.X)
W) ZTxP

is called the Ricci curvature of manifold M at the point p in the direction of
the vector X.
Let ||X||=1. Then fromformulas (22) and (23) we get

m m m
rp(X) =Rp(X,X) = _ZlRp(Ei, X, X,Ej) = _ZlRp(x, E)= _Zle(x, E). (24
1= 1= 1=
This formula allows us to calculate the Ricci curvature, if we know all the sec-
tional curvatures Ky(X,Ej), 1=1,2,...,m.

Definition 68. Trace of the Ricci tensor at a point peM is called scalar
curvature of manifold M at point p, and we denote it py.

Pp= igmllﬁo(Ei) = gm:ljgm:le(Ej, Ei)= szri:lRijji-

§4. Function of distance of Riemannian manifold.
Extremal property of geodesic lines
Let M be a connected Riemannian manifold. Denote Q,q the set of all
piecewise smooth paths [0,1]—M with the beginning at p and end at q.

Since M is connected, Qu=<J. Sometimes we will identify a path and its im-
age — a curve on the manifold.
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Theorem 8. (Extremal property of geo-
desic lines 1) Let M be Riemannian manifold,
v be a geodesic linein M and pey. Then there
is such neighborhood V of the point p that for

any point gqeVNy the segment of geodesic line

vy connecting p and q is the shortest line
among all the other lines from Quq, which are
included in V (figure 49).

This theorem tells us, that geodesic line is the shortest “in small”, i:e. on
its small sections. At large it may not be the shortest line.

fig. 49

Example 23. Let p, g be two points on
the cylinder, which lies on one circle and are L
close enough (figure 48). We delete a point s, e N
which belongs to the shortest arc of the circle ( Yo /
connecting p and g. Let y; be the longest arc L
of the circle connecting p and q. Then v is S g
the only one geodesic line from Qg but it is
not the shortest one. Line vy, depicted on figure v
50 is shorter, then v,.

Consider a function p:MxM—>R

p(p,q) =inf{L(c)[ce 2},
where L(c) is the length of path:c (is the length of the shortest curve, that con-
nects p and Q).

Theorem 9. (M, p) is metric space.
Proof. We need to check, that the following axioms are true.

1. p(p,q) = p(d:P);

fig. 50

r

2. p(p,r) +p(r,0) 2 p(p,q) (figure 51); —~_

3.p(P.a)20 1 p(p,a)=0 < p=q. q

Axiom 1 is obvious from the definition. p

Suppose, that axiom 2 fails. Consider value fig.51
e=p(p,q)—(p(p.n) +p(r.q))>0. (25)

Let CaeQy and c,eQyq are such paths, that

L(ci1)—p(p,r)<eld, L(c2)—p(r,q)<el4.
Then gluing together paths c¢; and ¢, we get such path ¢, that
L(c)=L(cy)+L(c1) and

0<L(c)—(p(p,r) +p(r,q)) <e/2. (26)
Let’s make difference (25) — (26). We get
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p(p.q)-L(c)>&2 = L(c)<p(p.0).
It is contradiction and it means that our supposition is false.

Let’s prove 3. If p=q then the path c(t)=p connects p and q and
L(c)=0 = p(p,q)=0.

Conversely, let p(p,q)=0. It means that Ve>0 there is ceQy such
that L(c)<e. Therefore points p and q are into a sufficiently small neighbor-
hood, where the geodesic line de(yq is
the shortest one. Thus L(d)<e Ve>0 1y
= L(d)=0.m

The question arises: why in the defi-
nition we have infinum and not minimum? R —
Consider the plane with the deleted origin:
RA{O}. Let p=(1,0), p=(-1,0) (figure
52). According to the definition p(p,q) =2,
but there is no the shortest path in Q, i.e.
minimum cannot be reached. However there
are paths with length as close to 2 as you fig.52
like.

\

O ¢
O
O ¢

Theorem 10. Topology of the metric space (M,p) defined by the function
p coincide with the topology of the differential manifold M.

In order to prove the theoremwe must prove, that open set in the manifold
M is open in metric space (M,p) and vice versa.

If we fix point peM, then we get a function on manifold M

f@)=p(p.a), f:M—->R.
Theorem 11. Function f2(q) is differentiable.
Immediately note that function f(q) itself is not differentiable.
Example 24. Let M=R, p(0), q(x).
Then f(g)=|x| (figure'53). It is well-known, f(a
that this function is not differentiable at point p.
Analogously,. if .p is the north pole of the
sphere S$? and r is the south pole, then out
function is not differentiable both at p and r.

v X

The property of radial isometricity of 0
mapping expp: To;M—M leads to the fact that
for & small enough it maps the ball fig.53

B(0,0) c T,M onto the ball B(p,3) =M.

Theorem 12. (Extremal property of geodesic lines 1) Let M be Rie-
mannian manifold. For any point peM there is a neighborhood W, that has
the following property. For any points g, gz there is the only one geodesic line
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connecting the points and lying entirely in U. This geodesic line is the shortest
among all the curves from Q.

Before we prove the theorem we need some definitions.

Definition 69. Open subset G of Riemannian manifold M is called sim-
ple, if for any two points p,qeM there is no more than one geodesic path
c:[0,1] > G with ends p=c(0), g=c(1).

It is obvious, that any open subset in G is simple, if G is simple.

Definition 70. Subset G of a Riemannian manifold M is called convex,
if for any two points p,qeM there is a geodesic path © ¢ with length
L(c)=p(p,q). Subset G is called strongly convex if it is convex, and moreover
all the balls B(p,8)cG are convex.

Theorem 12 now can be formulated as follows. Each point peM has a

convex neighborhood. As the matter of fact, it has strongly convex neighbor-
hood, but we are not going to prove that fact.

Proof of theorem 12. Step I. Let peM andlet V be its neighborhood
from theorem 8. Let ScTy,M be such subset, that (expy)|s is one-to-one map-
ping and Vi=expy(S)cV. Then point p can be connected with each point
gqeV: with no more than one geodesic line. Let

8(p) =sup{&{B(p.8)=V1 }.
It is radius of the biggest ball in Vy. with center p. We will call & the radius of
injectivity of mapping expp.
Denote W=exp,(B(p,5(p)). Then W is closed bounded set and therefore

W is compact. We except-without poof, that §(p) is a continuous function.
Thus it reaches its minimum on: W.

Denote 8,= mig o(r). Then ball U=B(p,5,/2) (figure 54) is a simple set.
eW

In fact,vqi, 02U holds

do , 0o
P(01,02) <p(q1,P) + p(P,G2) <7 +75 = Bo.

It means, that 3(01)>p(0:1,02) = 92€B(q1,8(d1)). Thus expg, maps injectively
B(0,8(qs)) on B(q1,0(1)), i.e. there can’t be more than one geodesic

line connecting gi and g, inside B(Q1,6(01)). But B(p,8./2) —B(01,6(g1)) and
therefore B(p,d,/2) has the same property.
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fig.54

Step 11. We except without prove,
that unique geodesic line vy, connecting
gy and ¢ inside V doesn’t leave U
(figure 55).

Step Il1. is the shortest among all
the lines from Qq,q, that don’t leave V.
In order to complete the proof of the
theorem we must prove, that any line
which leaves V islonger than vy.

Exersise 9. Prove it independent-
ly, using figure 56.

§5. Compaction

Definition 71. Let (M,p) be metric space. We say, that sequence of
points Xi, Xo, ..., Xn,... CONVerges to point x, if Ye>0 there is such number N,
that {Xn+1,Xn+2, ... J&B(X,€), that is, whatever the ball has center at point X,
starting from certain number N all the points of the sequence fall into this ball.

Definition 72. Let (M,t) be topological space. We say, that sequence of
points  Xi, X2, ..., Xn, ... CONverges to point x, if for any neighborhood V of
point x there is such number N, that {Xn+1, Xn+2,... yC V.

Definition 73. Set W in topological space (M,1) is called precompact,
if from any sequence of points Xi,Xa,...,Xn, ... we can choose convergent sub-
sequence {Xi, Xi,, ... }. If this subsequence converges to point x, which always
belongs.to W, then W is called compact.

Example 25. 1) Ray [0,+) in topological space R is not precompact.
We can’t choose convergent subsequence from sequence 1,2,3,....

2) Interval (0,1) in topological space R is precompact, but not com-
pact. Any subsequence from sequence {1/2, 1/3, 1/4,...} converges to point 0,
but 0¢(0,1).
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3) Segment [0,1] in topological space R is compact.
4) The sphere and the torus in three-dimensional space are compact.

Definition 74. Set W in metric space (M,p) is called bounded, if there
is such ball B(p,r), that WcB(p,r). It is equivalent to the fact, that the diameter
of this set is finite: d(W)<oo.

Theorem 13. Set W in the Euclidean metric space R" is precompact if
and only if it is bounded. (The sketch of the proof for R? will be given on lec-
tures).

Definition 75. We say, that aggregate of sets {U«}«c forms a cover (an
overlapping) of set W if Wc U U..

acl

Theorem 14. Set W in metric space (M,p) is compact if and only if it is
possible to choose it’s finite subcover from any it’s infinite open cover.

In other words, W is compact < from infinite number of open sets, that
cover W we can choose finite number, that also cover W.

Example 26. 1) Sets (-1,1), (0,2), I
(1,3) ... coverray [0,+o). We can’t choose L B e
finite number of sets, that cover [0,+x). SN N
2) Sets ... (12"1) ... (1/8,1), . ‘\K/*Kxj‘\yf
(1/4,1), (1/2,1) forms cover of interval e N A
(0,1). We can’t choose finite number of \ / /

sets, that cover (0,1). e o ~p o7

3) Plane R? can be covered by open
balls of radius 2 with centers at integral
points (figure 57). It is-obvious, that it is
impossible to choose finite‘cover from these fig.57
sets.

Definition. 76. Set W in topological space (M,t) is called bicompact if
it is possible to-.choose it’s finite subcover from any it’s infinite open cover.

For metric spaces notions of compact and bicompact sets are coincide, nut
for arbitrary topological space they are different.

Why theorem 12 is not true for an arbitrary metric space? Consider
RA{0} - the plane with the deleted point 0. Let B(0,r)\{0} be an open ball with
the deleted center. This set is bounded, but it is not precompact, because any se-
quence, that converges to 0 in R? does’t converge in our space. For instance,
sequence (1/i,0) does’t converge (figure 58). This is because that our space is
not complete, one point is missing in it.

By the way, B(0,r)\{0} is homeomorphic to infinite cylinder or to open
ring B(0,2)\B(0,1) (figure 59).
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Theorem 14. Any continuous function f:W— R defined on a compact set
W attains its maximal and minimal values on W.
Example 27. f(x)=¢€* is defined on R.R
is not compact, and this function doesn’t attain
the largest and least values. We can only say
that igff(x)=0,sgpf(x):+oo. But if we con-

sider the same function as defined on [O0,1], _//1<
then maxf(x)=e, minf(x)=0 (figure 60).

Example 28. The sphere and the torus O 1
are compact. Therefore any continuous-function fig. 60

f:S2 3R or f:T?—R attains its maximal and
minimal values.

Ya

e

V><

§6. Complete Riemannian manifold

Remember which examples we used in order to show, that not always two
points of connected Riemannian manifold M can be connected by a geodesic
line, that not any geodesic line can be infinitely prolonged and that exponential
mapping can be defined not on the entire T,M. We took the cylinder and deleted
a point from it, or we have considered the semiplane (half-plane). These mani-

folds are as if “not.complete”. It is only “a half of plane” or “manifold with a
hole”.

Definition 77. Riemannian manifold M is called complete, if metric
space (M,p) iscomplete, where p is the function of distance of the manifold.

Suppose, that Levi-Civitta connectivity is introduced on manifold M.
Theorem 15. (of Hopf-Rinov) The following conditions are equivalent:
1) M is complete;

2) V peM mapping exp, is defined on the entire T,M;

3) any geodesic line defined on some interval | can be prolonged to ge-
odesic line defined on R;

4) every closed and bounded with respect to p subsetin M is compact.
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The following statement is an implication of each of the statements 1-4:
5) Any two points p,qeM can be connected by a geodesic line of the
length p(p,q).

§7. Comparison theorems. Connection with curvature
and topological structure
Theorem 16. (Toponogov's angle comparison theorem) Let M be a

complete Riemannian manifold, m=dimM>2. Suppose, that for-all peM and
for all two-dimensional spaces ceTpM holds Ks>x=const>0. If k>0 we

denote M=S, r=% and if =0 we denote M=R™
K

Let A=(Co,C1,C2) be a geodesic triangle in M 4 Ca
with angles (o, a1, 02). Then there is triangle C
A=(Eo, €1, ;) in M with angles (o, 71, 72)
such that Yo y(
L(c) = L(E)) (27) C
vi>vi, 1=0,1,2, (28) fig.56

We shell note, that for R™ holds Ks=0. and for S holds Kczmzé.

Therefore the theorem can be reformulated as follows. If the sectional curvature
of manifold M is greater or equal to then the sectional curvature of manifold

M, then a geodesic triangle on ‘M has angles greater or equal than correspond-
ing geodesic triangle with equal sides on M.

Theorem 17. (of Hadamard-Cartan) Let M be a complete Riemannian
manifold, n=dimM>2"and Ks<0 for all ccT,M and for all peM. Then for
any point peM the mapping exp,: T,M — M is diffeomorphism. In particular,
M is diffeomorphicto R".

Thus, a space of non-positive sectional curvature is diffeomorphic to R";
therefore, it is. covered by only one map (M,p). As ¢ we can take
expp 1: M = ToM. pyrumu cioamu, M 310 ecth R" Ha KOTOPOM BMECTO CTaH-
JTapTHON METPUKM BBEJcHa HEKoTopas apyras merpuka. In other words, M is
R™on which some other metric is introduced instead of the standard metric.

Denote pu= supMp(p,q) — the diameter of a manifold M with respect to

the internal metrics p.

Theorem 18. (of Meyers) Let M be complete Riemannian manifold,
and Ks>x=const>0 for all ccT,M and for all peM. Then for all p,qeM
holds the inequality
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This means that a manifold with positive sectional curvature separated
from zero has a bounded diameter. Why do we write Ks>x>0 instead of
Ks>0? The second means that the curvature can tend to zero in some directions,
and the first notation means that K. is delimited from zero by a constant. Recall
that the diameter of a sphere of radius r with respect to the intrinsic metric is

equal mr =% (figure 28).
K

Theorem 19. Let M be a complete Riemannian manifold, and

Ks>x=const>0 for all ccTyM and for all peM. If psz, then M is
K

isometrically diffeomorphic to the sphere S;' of the curvature (i.e. r= \%).

In other words, if M has the same diameter as the sphere, and its section-
al curvature is not less than that of the sphere, then M is isometric to the sphere.
Basically, this means that M is the sphere.

Theorem 20. (The theorem on sphere) Let M be complete Riemannian
manifold, n=dimM=>2. Let the sectional curvature of the manifold M is

5-bounded with 5>% ie.

1
4<8< Ks<1l

for all ccT,M and for all peM. Then M is homeomorphic to the sphere (i.e.
M is topologically arranged, like a sphere, and with a special specification of
the metric, it can serve as a model for M).
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