Таблица – Динамика роста коллекции представителей семейства вересковые в ботаническом саду ВГУ имени П.М. Машерова за период 1995 - 2020 годы

Год	К-во видов и разновидностей,	Доля от состава коллекции древесных	Динамика роста	К-во видов и разновидностей в составе коллекции
104	шт.	растений, %	коллекции	древесных растений, шт.
1995	23	7,9	,	291
2000	23	7,9	0	291
2005	11	3,79	-12	290
2010	12	3,5	1	343
2015	9	2,47	-3	364
2020	11	2,89	2	381

Ботанический сад ВГУ имени П.М. Машерова продолжает увеличивать коллекцию растений семейства вересковые путем привлечения новых видов и разновидностей. На первичном интродукционном испытании в данный момент находятся 25 новых видов, в 2019 – 2020 годах высеяны и наблюдаются еще 23 вида семейства вересковые.

Заключение. Таким образом, в коллекции ботанического сада ВГУ имени П.М. Машерова по состоянию на полевой период 2020 года 11 видов растений семейства вересковые (*Ericaceae*). Ведется работа по интродукции еще 25 видов.

1. Коровин, С.Е., Переселение растений. Методические подходы к проведению работ / С.Е. Коровин, З.Е. Кузьмин, Н.В. Трулевич [и др.] – М.: Изд-во МСХА, 2001. – 76 с.

СОДЕРЖАНИЕ ВОССТАНОВЛЕННОГО ГЛУТАТИОНА В ПРОРОСТКАХ ОГУРЦА И ПШЕНИЦЫ ПРИ СОВМЕСТНОМ ПРОРАЩИВАНИИ С СИДЕРАТАМИ

Н.А. Орлова, Н.А. Степанова Витебск, ВГУ имени П.М. Машерова

Растения, прорастая в почву выделяют гормоны, фитонциды, ферменты. Эти химические вещества по-разному влияют на произрастающие рядом, или после них, культуры. Состав некоторых веществ, обладающих подобными свойствами, определен – это алкалоиды, терпеноиды, стероиды [1]. Взаимное влияние растений через изменение среды в результате выделения в нее продуктов жизнедеятельности называется аллелопатией. Аллелопатически активные вещества, выделяемые органами растений в почву, значительно влияют на процесс прорастания семян и развития проростков. Они способны задерживать или ускорять развитие семян, изменять или преодолевать состояние их покоя, воздействовать на прорастание семян и формирование органов проростка.

Одним из способов аллелопатического воздействия на культурные растения в севообороте является применение сидератов. Они наравне с органическими удобрениями воздействуют на урожайность, позволяя почве вернуть утраченную структурность, обогащая элементами питания. Известно, что в процессе прорастания семян происходит количественное и качественное изменение липидного состава, в том числе за счет перекисного окисления липидов (ПОЛ) вследствие активизации метаболических процессов с участием кислорода [2, 3].

Значительную роль в нейтрализации активных форм кислорода отводят низкомолекулярному антиоксиданту глутатиону и ферментам глутатионового цикла.

Глутатион – линейный трипептид, состоящий из трех аминокислотных остатков (γ-Glu-Cys-Gly) существующий в двух основных стабильных формах: восстановленной (GSH) и окислеенной. Функции глутатиона обуславливают его антиоксидантное действие: инактивация радикальных частиц, в том числе и активных форм кислорода, защита тиоловых групп белков, разрушение перекисных соединений. Использование GSH в антиоксидантной защите может происходить несколькими путями: с преобладанием процессов его ресинтеза или активного участия в окислительно-восстановительных процессах. Второй путь является более уязвимым, так как в условиях стресса ресурс глутатиона истощается. Это может привести к нарушению функционирования глутатионзависимой антипероксидной системы клеток [4].

Представляет интерес в условиях лабораторного эксперимента выяснить, как соотносятся между собой морфометрические показатели и количество глутатиона восстановленного в проростках семян пшеницы и огурца при совместном проращивании их с сидератами.

Цель работы – определить морфометрические показатели и содержание восстановленного глутатиона в проростках при совместном проращивании семян огурца посевного (*Cucumis sativus*) и пшеницы обыкновенной (*Triticum vulgare*) с семенами редьки масличной (*Raphanus raphanistrum*) и люпина узколистного (*Lupinus angustifolius*).

Материал и методы. Семена пшеницы и огурца проращивали раздельно (контроль) и совместно с сидератными растениями. В качестве сидератов были выбраны редька масличная как представитель крестоцветных и люпин узколистный как представитель бобовых.

Предпосевная обработка заключалась в замачивании семян в течении двух часов. Затем семена, в количестве 15 штук на одну чашку Петри, проращивали на подложке из фильтровальной бумаги при 25°С на свету в течение трех суток. Опыт проводили в трех повторностях. Содержание восстановленного глутатиона определяли следующим образом: проростки семян гомогенизировали в холодном 0,25 М Tris-HCl-буфере (1:10). Для осаждения белка добавляли 0,3 мл 10% раствора ТХУ. Пробы центрифугировали 10 мин при 3000 об/мин. К полученному супернатанту добавляли 3мл 0,2 М калий-фосфатного буфера (КНФБ) и 0,1 мл ДТНБК, инкубировали 10 мин и измеряли оптическую плотность при 412 нм против контрольной пробы [5].

Обработку полученных результатов проводили методом параметрической статистики с использованием пакета статистических программ Microsoft Excel 2010. Статистическую значимость отличий определяли по критерию Стъюдента при р < 0.05.

Результаты и их обсуждение. Результаты представлены в таблицах. Из таблицы 1 следует, что совместное проращивание семян огурца с семенами люпина и масличной редьки не повлияло ни на длину корней, ни на длину надземной части проростков. Пшеница оказалась более чувствительной к воздействию выделений масличной редьки и люпина. Так, длина корней под действием люпина уменьшилась в 17 раз, а под действием редьки в 1,3.

Таблица 1 – Сравнение морфометрических показателей при совместном и раздельном проращивании огурца посевного и пшеницы обыкновенной с редькой масличной и люпином (*M*±*m*)

Длина надземной части проростков (мм)					
Экспериментальные группы	Огурец посевной	Пшеница обыкновенная			
Контроль	5,3±0,27	12,03±0,68			
Совместное проращивание с семенами люпина узколистного	6,2±0,34	4,53±0,29*↓			
Совместное проращивание с семенами масличной редьки	5,06±0,22	10,88±0,97			
Длина корней (мм)					
Контроль	-	51,5±3,00			
Совместное проращивание с семенами люпина узколистного	-	3,01±0,5*↓			
Совместное проращивание с семенами масличной редьки	-	39,8±4,80*↓			

Примечание: * – Результаты статистически значимы по сравнению с контролем p<0,05. Стрелка показывает уменьшение или увеличение.

Длина надземной части проростков пшеницы при совместном проращивании с люпином оказалась в 2,7 раза меньше, чем при раздельном проращивании. Масличная редька не повлияла на длину надземной части проростков пшеницы. К действию сидератов у пшеницы оказались более чувствительны корни проростков.

Из таблицы 2 следует, что количество восстановленного глутатиона в проростках и огурца, и пшеницы, проращиваемых совместно с семенами люпина и редьки масличной, ниже, соответственно, в 1,7 и 1,4 раза, и 1,5 и 1,4, чем в семенах контрольной группы.

Соотношение GSH/GSSG поддерживает окислительно-восстановительный баланс в клетке. При оптимальном клеточном редокс статусе основная часть глутатиона находится в восстановленной форме. В период окислительного стресса концентрация GSH снижается [5].

Таблица 2 – Сравнение содержания восстановленного глутатиона (нмоль/г) в проростках семян огурца посевного и пшеницы обыкновенной при проращивании с редькой масличной и люпином $(M\pm m)$

Экспериментальные группы	Огурец посевной	Пшеница обыкновенная
Контроль	2,37±0,14	2,81±0,10
Совместное проращивание с семенами люпина узколистного	1,39±0,05¹↓	1,84±0,06¹↓
Совместное проращивание с семенами масличной редьки	1,74±0,03 ¹ ↓	1,96±0,06¹↓

Примечание: Результаты статистически значимы, p < 0.05: 1 – по сравнению с контролем

Таким образом, в эксперименте при совместном проращивании с сидератами, семена пшеницы испытывали окислительный стресс, так как часть восстановленного глутатиона использовалась на восстановление окисленных форм кислорода.

Можно, предположить, что несмотря на неизменность морфометрических показателей проростков огурца, совместное проращивание с сидератами также сопровождалось окислительным стрессом, так как количество глутатиона в этом эксперименте снизилось, причем на противодействие стрессового действия люпина на проростки огурца и пшеницы затратилось больше глутатиона, чем на действие масличной редьки.

Заключение. Выявлено прямое соотношение морфометрических показателей (длина корней) и количество восстановленного глутатиона в семенах пшеницы при совместном проращивании ее с люпином, а с редькой масличной – прямое соотношение между количеством глутатиона и длиной корней и надземной части. На противодействие стрессового влияния люпина на проростки огурца и пшеницы при их совместном проращивании затратилось больше глутатиона, чем на противодействие стрессового влияния масличной редьки. Результаты показывают, что восстановленный глутатион может использоваться в качестве доказательства факта окислительного стресса при взаимодействии растений в условиях совместного проращивания.

- 1. Поляк, Ю. М. Аллелопатические взаимоотношения растений и микроорганизмов в почвенных экосистемах / Ю.М. Поляк, В.И. Сухаревич // Успехи современной биологии, 2019. том 139. № 2. с.147-160.
- 2. Олейниченко, Н. А Влияние экзогенных фенольных соединений на перекисное окисление липидов у растений пшеницы / Н.А. Олениченко, Е. С. Городкова, Н. В. Загоскина // Сельскохозяйственная биология. − 2008 − № 3 − С. 58-61
 - 3. Рогожин В. В. Практикум по биологической химии / В.В. Рогожин. СПб.: ГИОРД. 2006 256 с.
- 4. Баймухаметова, Э.А Глутатион и глутатион-S- трансферазы: важнейшие компоненты системы антиоксидантной защиты растений /Э.А Баймухаметова, Р.М. Таипова, Б.Р. Кулуев / Электронный ресурс. Режим доступа https://www.researchgate.net/publication/315381267_Glutathione_and_glutathione_S-transferases_key_components_of_the_antioxidant_protection_system_of_plants_Glutation_i_glutation-S-

transferazy vaznejsie komponenty sistemy antioksidantnoj zasity rasteni Дата доступа 31.01.2021

5. Данченко, Е.О. Методы биохимических исследований, основанные на применении специализированного оборудования / Е.О. Данченко, А.А. Чиркин, О.М. Балаева-Тихомирова, Т.А. Толкачева. – Витебск: ВГУ имени П.М. Машерова, - 2018. – С. 30-31.

РАСПРЕДЕЛЕНИЕ ПОЧВООБРАЗУЮЩИХ ПОРОД В СОСТАВЕ ЗЕМЕЛЬ ВИТЕБСКОЙ ОБЛАСТИ

Г.И. Пиловец Витебск, ВГУ имени П.М. Машерова

Почва как природное тело, возникшее в результате преобразования поверхностных слоев земли под совместным воздействием воды, воздуха и живых организмов, обладает плодородием, является национальным достоянием страны и основой жизнедеятельности человека [1]. В настоящее время в Беларуси выполнено обобщение и систематизация информации о современном строении, составе и свойствах почв. В этой связи представляется необходимым дать актуальную информацию, характеризующую почвенный покров страны и ее регионов, в частности Витебской области.

Материал и методы. В основу исследования легли материалы теоретических и прикладных научных исследований почв республики, результаты почвенно-картографических и зем-