Finite groups with prime graphs of diameter 5

Ilya B. Gorshkov, Andrey V. Kukharev

Abstract

In this paper we consider a prime graph of finite groups. In particular, we expect finite groups with prime graphs of maximal diameter.

1 Introduction

In this paper, all groups are finite. The prime graph $\Gamma(G)$ of a group G is defined as follows. The vertex set is $\pi(G)$ the set of prime divisors of the order of G, and two distinct primes $r, s \in \pi(G)$ considered as vertices of the graph are adjacent if and only if there exists an element $g \in G$ such that $|g|=r s$.

We say that the graph Γ is isomorphic to the prime graph of the group G if the vertices of the graph Γ can be marked of primes so that the resulting graph Γ^{\prime} is equal to the graph $\Gamma(G)$.

The structure of a finite group G such that $\Gamma(G)$ is disconnected has been determined by Williams [6]. All simple groups G such that $\Gamma(G)$ is disconnected have been described in [2] and [6].

The complement of the prime graph of a solvable group does not contain triangles that have been proved by Lucido [3]. In [1] were completely classified of a prime graphs of solvable groups. In particular, the graph Γ is isomorphic to $\Gamma(G)$, where G is a solvable group if and only if the complement of Γ is without triangles and 3 -colorable. However, the general question remains open.

Question 1. When a graph Γ is isomorphic to a prime graph of some group?
In this paper we consider the diameter of $\Gamma(G)$. We write $d(p, q)$ to denote the distance between elements p and q if they are in the same connected component of $\Gamma(G)$. We define the diameter of $\Gamma(G)$ as follows:

[^0]$\operatorname{diam}(\Gamma(G))=\max \{d(p, q) \mid p, q$ in the same connected component of $\Gamma(G)\}$.
Lucido [3] proved that $\operatorname{diam}(\Gamma(G)) \leq 5$. Moreover, she classifies all almost simple groups with property that the diameter of its prime graph is equal to 5 .

Theorem 1. [3, Proposition 12] Let G be an almost simple group such that $\operatorname{diam}(\Gamma(G))=5$. Then G has the following structure:
$G \simeq E_{8}(q) \cdot H$, where $q=p^{n}, q \equiv 0,1$ or $4 \bmod 5, n=3^{s} 5^{t}$ where $s, t>0$ and $H=\langle\gamma\rangle$, where γ is a field automorphism of order n.

The main goal of this paper is to describe groups with a prime graph of diameter 5.

A chain graph is a graph without any cycles. Denote by $s(G)$ the number of connected components of $\Gamma(G)$ and by $\pi_{i}(G), i=1, \ldots, s(G)$, its i th connected component. If G has even order, then put $2 \in \pi_{1}(G)$.

Theorem 2. Let G be a group such that $\operatorname{diam}(\Gamma(G))=5$ and $a, b_{1}, b_{2}, b_{3}, b_{4}, c$ is a chain in $\Gamma(G)$. Then $G=K . S . A$ where K is a nilpotent subgroup, S is a simple group and $A \leq \operatorname{Out}(S),\left\{a, b_{1}, b_{4}, c\right\} \subseteq \pi(S) \backslash(\pi(K) \cup \pi(A))$. Furthermore one of the following statements holds:

1. $\operatorname{diam}(\Gamma(G) \backslash \Gamma(K))=5$. In particular, G / K is an almost simple group satisfying Lucido theorem.
2. If $b_{2} \in \pi(K)$, then $b_{3} \in \pi(K) \cup \pi(A)$. The graph $\Gamma(S)$ contains more than 2 connected components and $\left\{a, b_{1}, b_{4}, c\right\} \cap \pi_{1}(S)=\varnothing$.

Remark 1. Note that, when G satisfies the statement 1 of Theorem 2, then G / K satisfies the Lucido theorem. Hence, $G / K \simeq E_{8}(q) . H$, where $q=p^{n}, q \equiv 0,1$ or $4 \bmod 5, n=3^{s} 5^{t}$ where $s, t>0$ and $H=\langle\gamma\rangle$, where γ is a field automorphism of order n. The existence of groups satisfying the statement 2 of Theorem 2 depends on the validity of the following conjecture.

Conjecture 1. Let S be a finite simple group with disconnected prime graph, $a, b \in$ $\pi_{2}(S)$ be different primes and $x, y \in S$ be elements of order a and b respectively. If there exists an irreducible S-module M such that $C_{M}(x)>1$, then $C_{M}(y)>1$.

It is easy to see that if the conjecture is true, then statement 2 of Theorem 2 is impossible.

Williams [6] and Kondratev [2] described simple groups G such that $\Gamma(G)$ is disconnected. In particular, from this description follows that S is isomorphic $A_{1}(q)$, where $3<q \equiv \pm 1(4)$, or simple group of exceptional Lie type.

2 Definitions and preliminary results

Lemma 1. [1, Theorem 2]An unlabeled graph F is isomorphic to the prime graph of some solvable group if and only if its complement \bar{F} is 3 -colorable and trianglefree.

Lemma 2. [3, Proposition 1] Let G be a finite solvable group. If p, q, r are three distinct primes of $\pi(G)$, then G contains an element of order the product of two of these primes.

Lemma 3. [3, Lemma 5] Let G be a finite simple group. If $p \in \pi_{1}(G)$, then $d(2, p) \leq 2$.

For graph Γ we will denote $\bar{\Gamma}$ the complement of Γ. Denote by $t(G)$ the maximal number of primes in $\pi(G)$ pairwise nonadjacent in $\Gamma(G)$. In graph theory this number is called the independence number of a graph. By analogy we denote by $t(2, G)$ the maximal number of vertices in the independent sets of $\Gamma(G)$ containing 2. Let $\omega(G)$ be the spectrum of G; i.e., the set of element orders of G. Denote by $\omega_{i}(G)$ the set of $n \in \omega(G)$ such that every prime divisor of n belongs to $\pi_{i}(G)$.

Lemma 4. [4] Let G be a finite group satisfying the two conditions:
(a) there exist three primes in $\pi(G)$ pairwise nonadjacent in $\Gamma(G)$;
(b) there exists an odd prime in $\pi(G)$ nonadjacent in $\Gamma(G)$ to the prime 2.

Then there exists a non-abelian simple group S such that $S \leq G=G / K \leq$ $\operatorname{Aut}(S)$ for the maximal normal solvable subgroup K of G. Furthermore, $t(S) \geq$ $t(G)-1$, and one of the following statements holds:
(1) $S \simeq A_{7}$ or $L_{2}(q)$ for some odd q, and $t(S)=t(2, S)=3$.
(2) For every prime $p \in \pi(G)$ nonadjacent to 2 in $\Gamma(G)$ a Sylow p-subgroup of G is isomorphic to a Sylow p-subgroup of S. In particular, $t(2, S) \geq t(2, G)$.

Lemma 5. [5, Lemma 3.6] Let s and p be distinct primes, a group H be a semidirect product of a normal p-subgroup T and a cyclic subgroup $C=\langle g\rangle$ of order s, and let $[T, g] \neq 1$. Suppose that H acts faithfully on a vector space V of positive characteristic t not equal to p. If the minimal polynomial of g on V does not equal $x^{s}-1$, then
(i) $C_{T}(g) \neq 1$;
(ii) T is non-abelian;
(iii) $p=2$ and $s=2^{2^{\delta}}+1$ is a Fermat prime.

Lemma 6. [7, Lemma 2.12] Let S be a finite simple group of Lie type. If $r, s, t \in$ $\pi(S)$ and $r t$, st $\in \omega(S)$, but $r s \notin \omega(S)$, then a Sylow t-subgroup of S is not cyclic.

3 Proof of Theorem 2

Let G be such that $\operatorname{diam}(\Gamma(G))=5, a, b_{1}, b_{2}, b_{3}, b_{4}, c \in V(\Gamma(G))$ be a path of length 5 . The numbers a, b_{2}, c is a triangle in $\overline{\Gamma(G)}$. Lemma 2 implies that G is non-solvable. Therefore, $2 \in \pi(G)$. Moreover, since $\operatorname{diam}(\Gamma(G))>2$ it follows that $t(2, G) \geq 3$. Using Lemma 4 , we get $G \simeq K . S . A$, where K is a solvable radical of G, S is a non-abelian simple group and $A \leq \operatorname{Out}(S)$.

Lemma 7. $S \not 千 L_{2}(q)$ for odd q.
Proof. Notice, that $\Gamma\left(L_{2}(q)\right)$ is a graph with three connected components every of which is complete. In particular, $\Gamma\left(L_{2}(q)\right)$ does not contains chains.

The proof is by contradiction. Let $S \simeq L_{2}(q)$ for some $q=p^{n}$ where p is odd prime. Assume that $a \in \pi(K)$. Lemma 4 implies that $b_{2}, b_{3}, b_{4}, c \in \pi(S) \backslash \pi(|K \| A|)$. Therefore, $\Gamma(S)$ contains a chain of length 4 ; a contradiction with the fact that $\Gamma(S)$ does not contain chain. By analogy, we can show that $\pi(K)$ does not contain b_{1}, b_{4}, c.

Assume that $b_{2} \in \pi(K)$. Therefore, $a, b_{1} \in \pi((q-1) / 2)$ or $c, b_{4} \in \pi((q-1) / 2)$. Let $r \in\{a, c\} \cap \pi((q-1) / 2)$. We have that $L_{2}(q)$ includes a Frobenius group F with kernel Q of order q and complement K of order $(q-1) / 2$. Let $\bar{G}=T \triangleleft G$ such that $T<K$ and K / T includes a normal Sylow b_{2}-subgroup H. Let P be a Sylow p-subgroup of \bar{G}. Assume that $P<C_{\bar{G}}(H)$. Since H is a normal subgroup of \bar{G} we have that $X=\left\langle P^{G}\right\rangle<C_{\bar{G}}(H)$. We have that $X \bar{K} / \bar{K}$ is a normal subgroup of S. Therefore, $X \bar{K} / \bar{K}=S$ and $r \in \pi\left(C_{\bar{G}}(H)\right)$; a contradiction. Therefore, P acts no trivial on H. From Frattini's argument it follows that $N_{\bar{G}}(P)$ includes a r-subgroup T such that $T \bar{K} / \bar{K}$ is a Sylow r-subgroup of S. From Lemma 5 it follows that $C_{\bar{G}}(H)$ contains an element of order $b_{2} r$; a contradiction. By analogy, we can show that $\pi(K)$ does not contain b_{3}. Thus $a, b_{1}, b_{2}, b_{3}, b_{4}, c \in \pi(S . A)$; a contradiction with Theorem 1.

Lemma 8. $S \not 千 A l t_{7}$.
Proof. Assume that $S \simeq A l t_{7}$. Then a Sylow 3 -subgroup of S is an elementary abelian group of order 9 . Therefore, for every $p \in \pi(K)$ we have $3 p \in \omega(G)$. Using this fact it is easy show that $\operatorname{diam}(G) \leq 3$.

Lemma 9. If $t \in \pi(K)$, then $2 t \in \omega(G)$.
Proof. Assume that there exists $t \in \pi(K)$ such that $2 t \notin \omega(G)$. Let $R \triangleleft G$ be such that $\bar{K}=K / R$ includes a normal t-subgroup T. Let $P \in S y l_{2}(K . S / R)$. We have that P is cyclic or generalized quaternion group. Since $P R / R$ is a Sylow subgroup of S, we see that $P R / R$ is a dihedral group. A finite simple group has a dihedral Sylow 2-subgroup only in the case isomorphic to Alt_{7} or $L_{2}(q)$. From Lemmas 7 and 8 we have that S does not isomorphic $L_{2}(q)$ and $A l t_{7}$.

Lemma 10. $b_{1}, b_{4}, c, a \notin \pi(K)$.
Proof. Assume that $c \in \pi(K)$. Lemma 4 implies that $a, b_{1}, b_{2}, b_{3} \in \pi(S) \backslash(\pi(A) \cap$ $\pi(K)$). Since $\pi_{n}(S)$, where $n>1$, is a full component of $\Gamma(S)$, we see that $a, b_{1}, b_{2}, b_{3} \in \pi_{1}(S)$. From Lemma 9 it follows that $2 c \in \omega(G)$. Therefore, $\omega(G)$ does not contain an element of order $2 t$ for $t \in\left\{a, b_{1}, b_{2}\right\}$. Since $a, b_{1}, b_{2}, b_{3} \in \pi_{1}(S)$, we obtain $d_{S}(2, a)>3$. It is a contradiction with Lemma 3 .

Assume that $b_{1} \in \pi(K)$. From Lemma 4 it follows that $b_{3}, c \in \pi(S)$. If $b_{4} \in \pi(S)$, then similar as above, we can get a contradiction. Let $b_{4} \in \pi(K)$. From the Frattini argument we have that automorphisms groups of Sylow b_{1} - and
b_{4}-subgroups are non-solvable. Therefore, Sylow b_{1} - and b_{2}-subgroups are not cyclic, in particular $b_{1} b_{4} \in \omega(K)$; a contradiction. Assume that $b_{4} \in \pi(A)$. Hence, $2 b_{4} \in \omega(S . A)$. Since $S \nsucceq A l t_{7}$ and $S \nsucceq L_{2}(q)$, we see that $2 b_{1} \in \omega(G)$. Thus $a, b_{1}, 2, b_{4}, c$ is a chain in $\Gamma(G)$; a contradiction. Therefore, $b_{1} \in \pi(K)$. Similarly, it can be shown that $a, b_{4} \notin \pi(K)$.

Lemma 11. $\left\{b_{1}, b_{4}, c, a\right\} \cap \pi(A)=\varnothing$.
Proof. Similar to Lemma 10.
Lemma 12. K is nilpotent.
Proof. Assume that $\pi(K)$ includes p, q such that a Hall $\{p, q\}$-subgroup H of K does not nilpotent. From the Frattini argument it follows that $N_{G}(H)$ includes a subgroup T such that $T / N_{K}(H) \simeq S$. Let $X \triangleleft N_{G}(H)$ be such that a Hall $\{p, q\}$ subgroup of $N_{K}(H) / X$ is not nilpotent but for every $X<Y \triangleleft N_{G}(H)$ a Hall $\{p, q\}$-subgroup of $N_{K}(H) / Y$ is nilpotent. Denote by ${ }^{\sim}: N_{G}(H) \rightarrow N_{G}(H) / X$ the natural homomorphism. Let $N=N_{G}(H)$. From definition follows that \widetilde{N} includes a normal t-subgroup T, where $t \in\{p, q\}$. Let $r \in\{p, q\} \backslash\{t\}, R \in$ $\operatorname{Syl}_{r}(\widetilde{N})$. From definition of \widetilde{N} follows that R acts no trivial on T. The Frattini argument implies that $N_{\widetilde{G}}(R) / N_{\widetilde{K}(R)}$ includes a subgroup isomorphic S. Let $x, y \in$ $N_{\widetilde{G}}(R)$ be elements of order a and c respectively. Assume that $Z(R)<C_{\widetilde{G}}(x)$. Therefore, $\left\langle x^{N_{\widetilde{G}}(R)}\right\rangle<C_{\widetilde{G}}(Z(R))$. We know that $\left\langle x^{N_{\widetilde{G}}(R)}\right\rangle /\left\langle x^{N_{\widetilde{G}}}(R)\right\rangle \cap N_{\widetilde{K}}(R) \simeq S$. Therefore, $y \in C_{\widetilde{G}}(Z(R))$ and $d(a, c)=2$; a contradiction. We have $x \notin C_{\widetilde{G}}(Z(R))$. Similar we can show that $x \notin C_{\widetilde{G}}(Z(R))$. Applying Lemma 5 for groups T. $Z(R) \cdot\langle x\rangle$ and $T . Z(R) .\langle y\rangle$ we obtain \widetilde{G} contains elements of order $t a$ and $t c$, in particular, $d(a, c)=2$; a contradiction.

We show that for every $p, q \in \pi(K)$ a Hall $\{p, q\}$-subgroup of K is nilpotent. Therefore, Sylow p - and q-subgroups are commute. Hence, K is nilpotent.

Lemma 13. If $b_{2} \in \pi(K) \backslash \pi(G / K)$, then $b_{3} \in \pi(K) \cup \pi(A)$. The graph $\Gamma(S)$ contains more than 2 connected components and $a, b_{1}, b_{4}, c \notin \pi_{1}(S)$.
Proof. From Lemmas 10 and 11 follow that $a, b_{1}, b_{4}, c \in \pi(S)$. Assume that $c, b_{4} \in \pi_{1}(S)$. Since $d(2, c)=2$ there exists $h \in \pi(S)$ such that $2 h$, ch $\in \omega(S)$. From Lemma 6 follows that a Sylow h-subgroup of S is not cyclic. Consequently $h b_{2} \in \omega(G)$. Thus a, b_{1}, b_{2}, h, c is a chain in $\Gamma(G)$, in particular $d(a, c)<5$; a contradiction. We have $c, b_{4} \in \pi_{2}(S)$. Since $\pi_{2}(G)$ is a full component of $\Gamma(S)$, we see that $b_{3} \in \pi(K) \cup \pi(A)$. Assume that $a, b_{1} \in \pi_{1}(S)$. If $b_{3} \in \pi(K)$, then similar as above we can show that $a, c \notin \pi_{1}(S)$; a contradiction. Therefore, $b_{3} \in \pi(A)$. In this case we know that $2 b_{3} \in \omega(S . A)$. Hence, $a, b_{1}, 2, b_{3}, b_{4}, c$ is a chain of $\Gamma(A . S)$. From Lucido Theorem 1 follows that $a, b_{1} \notin \pi_{1}(S)$; a contradiction.

The main assertion of the theorem follows from Lemmas 10, 11 and 12. The statements 1) and 2) of Theorem follows from Lemmas 1 and 13.

4 Acknowledgements

The authors are supported by Russian Foundation for Basic Research (project 19-51-04002).

References

[1] A. Gruber, T.M. Keller, M.L. Lewis, K. Naughton, B. Strasser: A characterization of the prime graphs of solvable groups. Journal of Algebra 442 (2015) 397-422.
[2] A.S. Kondrat'ev: Prime graph components of finite simple groups. Matematicheskii Sbornik 180 (6) (1989) 787-797. English transl. Math. USSR-Sb. 67 (1990), 235-247.
[3] M.S. Lucido: The diameter of the prime graph of a finite group. Journal of Group Theory 2 (2) (1999) 157-172.
[4] A.V. Vasil'ev: On connection between the structure of a finite group and the properties of its prime graph. Siberian Mathematical Journal 46 (3) (2005) 396-404.
[5] A.V. Vasil'ev: On finite groups isospectral to simple classical groups. Journal of Algebra 423 (2015) 318-374.
[6] J.S. Williams: The prime graph components of finite groups. Journal of Algebra 69 (2) (1981) 487-513.
[7] N. Yang, M.A. Grechkoseeva, A.V. Vasil'ev: On the nilpotency of the solvable radical of a finite group isospectral to a simple group. Journal of Group Theory 23 (3) (2020) 447-470.

Received: 23 October 2019
Accepted for publication: 2 March 2020
Communicated by: Ivan Kaygorodov

[^0]: 2020 MSC: 20D60
 Key words: finite group, prime graph
 Affiliation:
 Ilya B. Gorshkov - Sobolev Institute of Mathematics SB RAS, 4 Acad. Koptyug avenue, 630090 Novosibirsk, Russia E-mail: ilygor8@gmail.com
 Andrey V. Kukharev - Vitebsk State University named after P.M. Masherov, Moskovskiy Avenue 33, 210038 Vitebsk, Belarus \& Siberian Federal University, 79 Svobodny pr., 660041 Krasnoyarsk, Russia
 E-mail: kukharev.av@mail.ru

