ОБ ОДНОМ СВОЙСТВЕ ПОРОЖДЕННЫХ КРАТНО σ -ЛОКАЛЬНЫХ ФОРМАЦИЙ

Стаселько И.И., Ходжагулыев А.,

магистранты ВГУ имени П.М. Машерова, г. Витебск, Республика Беларусь Научный руководитель – **Воробьев Н.Н.,** доктор физ.-мат. наук, доцент

Все рассматриваемые группы конечны. Мы будем использовать терминологию из [1–4]. Пусть $\sigma = \{\sigma_i \mid i \in I\}$ – некоторое разбиение множества всех простых чисел \mathbb{P} , где $\mathbb{P} = \bigcup_{G \in I} \sigma_i$ и $\sigma_i \cap \sigma_j = \emptyset$ для всех $i \neq j$. Если n – целое число, то символом $\pi(n)$ обозначается множество всех различных простых чисел, делящих n; $\sigma(n) = \{\sigma_i \mid \sigma_i \cap \pi(n) \neq \emptyset\}$; $\sigma(G) = \sigma(|G|)$; $\sigma(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \sigma(G)$. Для любой совокупности групп \mathfrak{F} символом \mathfrak{F} обозначается класс групп, порожденный совокупностью групп \mathfrak{F} . Символами $F_{\sigma_i}(G)$ и $O_{\sigma_i}(G)$ обозначают соответственно произведение всех нормальных σ'_i -замкнутых подгрупп группы G (см. [3]) и наибольшую нормальную σ_i -подгруппу группы G. Полуформацией называется класс групп, замкнутый относительно взятия гомоморфных образов (см. [2]). Формацией называется класс групп, замкнутый относительно взятия гомоморфных образов и конечных подпрямых произведений.

Пусть f – произвольная функция вида

 $f: \sigma \to \{\phi$ ормации групп $\}, (1)$

называемая формационной σ -функцией. Следуя [3, 4] функции f сопоставляют класс групп

$$LF_{\sigma}(f)=(G\mid G=1$$
 или $G\neq 1$ и $G/F_{\sigma_i}(G)\in f(\sigma_i)$ для всех $\sigma_i\in\sigma(G)$).

Если для некоторой формационной σ -функции f вида (1) имеет место $\mathfrak{F} = LF_{\sigma}(f)$, то \mathfrak{F} называется σ -локальной формацией с σ -локальным заданием f (см. [3, 4]). Следует отметить, что относительно включения \subseteq множество всех n-кратно σ -локальных формаций S_n^{σ} образует полную решетку (см. [4, теорема 1.15]). Совокупность формаций Θ называется полной решеткой формаций [2], если пересечение любой совокупности формаций из Θ снова принадлежит Θ , и во множестве Θ имеется такая формация \mathfrak{F} , что $\mathfrak{M} \subseteq \mathfrak{F}$ для всех формаций $\mathfrak{M} \in \Theta$. Мы используем l_n^{σ} form(\mathfrak{X}) для обозначения пересечения всех n-кратно σ -локальных формаций, содержащих совокупность групп \mathfrak{X} .

Всякая формация считается 0-кратно σ -локальной. При $n \ge 1$ формация $\mathfrak F$ называется n-кратно σ -локальной, если либо $\mathfrak F = (1)$ совпадает с классом единичных групп, либо $\mathfrak F = LF_{\sigma}(f)$, где все значения f являются (n-1)-кратно σ -локальными формациями для всех $\sigma_i \in \sigma(\mathfrak F)$ (см. [4]).

Основным результатом является следующая

Теорема. Пусть \mathfrak{M} – полуформация u $A \in l_n^{\sigma}$ form \mathfrak{M} , $n \geq 0$. Тогда если $O_{\sigma_i}(G) = 1$ u $\sigma_i \in \sigma$, то $A \in l_n^{\sigma}$ form \mathfrak{M}_1 , где $\mathfrak{M}_1 = (G/O_{v_i}(G) \mid G \in \mathfrak{M})$.

- 1. Шеметков, Л.А. Формации конечных групп / Л.А. Шеметков. М.: Наука. Гл. ред. физ-матем. лит., 1978. 272 с. (Соврем. алгебра).
 - 2. Скиба, А.Н. Алгебра формаций / А.Н. Скиба. Минск: Беларуская навука, 1997. 240 с.
- 3. Чи, Ч. О Σ_t^σ -замкнутых классах конечных групп / Ч. Чи, А.Н. Скиба // Укр. мат. журн. 2018. Т. 70, № 12. С. 1707–1716; англ. пер.: Chi, Z. On Σ_t^σ -closed classes of finite groups / Z. Chi, A.N. Skiba // Ukr. Math. J. 2019. Vol. 70, no. 12. Р. 1966–1977.
- 4. Chi, Z. On n-multiply σ -local formations of finite groups / Z. Chi, V.G. Safonov, A.N. Skiba // Comm. Algebra. 2019. Vol. 47, Nº 3. P. 957–968.