Например, компания по производству компьютеров ООО «Компьютер» использует поставщика ООО «Поставщик» для приобретения основных материалов. ООО «Поставщик» имеет политику, позволяющую своим клиентам, которые покупают в кредит, платить в течение 30-дневного периода.

На данный момент ООО «Компьютер» имеет 20 миллионов рублей наличных ресурсов и должен заплатить 5 миллионов рублей ООО «Поставщик» после 30-дневного периода для совершения покупок. Однако после 30-дневного периода ООО «Компьютер» имеет инвестиционную возможность, требующую использования всех денежных ресурсов в размере 20 миллионов рублей.

Если компания сможет пересмотреть свои условия с поставщиками, разрешив 60дневный период, задержка платежа позволит компании извлечь выгоду, используя текущие средства для инвестиций и расплачиваясь с поставщиками наличными деньгами, полученными в следующем месяце от других проектов. Таким образом, правильно управляя своими фондами, 000 «Компьютер» может воспользоваться инвестиционными возможностями, сохраняя при этом свою деятельность.

Заключение. Таким образом, управление, основанное на проектном подходе, позволяет компании эффективно распределять свои средства, принося больший доход, в целях покрытия операционных расходов, осуществления инвестиций, выплаты дивидендов акционерам и поддержания адекватных резервов.

- 1. Винокур М. Е. Организация производства и менеджмент: учеб.-метод. комплекс. М.: Проспект. 2020. 168 с.
- 2. Грибов В. Д. Основы экономики, менеджмента и маркетинга. Учебное пособие. М.: КноРус. 2020. 224 с.
- 3. Клочков А. Как повысить и оценить эффективность проектов // Рынок ценных бумаг. 2008. № 5.
- 4. Маслова Е. Л. Теория менеджмента. Практикум. М.: Дашков и Ко. 2019. 158 с.
- 5. Матюшок С.В. Роль проектного подхода в повышении экономической эффективности промышленных компаний. М.: РУДН, 2013. 22 с.

КОРРЕКЦИЯ ЧАСТОТНОЙ ХАРАКТЕРИСТИКИ КСВ АНТЕННЫ БШДА С ПРИМЕНЕНИЕМ КОМПЛЕКСНОГО КРИТЕРИЯ СООТВЕТСТВИЯ ИДЕАЛЬНОМУ ФИЛЬТРУ В ПОЛОСЕ ПРОПУСКАНИЯ

Коноплицкий А.С.,

адъюнкт УО «ВА РБ», г. Минск, Республика Беларусь Научный руководитель – **Шашок В.Н.,** канд. техн. наук, доцент

Практический интерес представляют радиостанции военного назначения, работающие в ОВЧ диапазоне частот и обеспечивающие обмен информации в различных условиях эксплуатации. В качестве примера, рассмотрим антенну БШДА совместимую с различными типами радиостанций «Р-168», «Р-173М», «Р-181», и предназначенную для установки на мобильную технику и бронетехнику (рисунок 1). По своим техническим характеристикам рассматриваемая антенна обеспечивает коэффициент стоячей волны (КСВ), измеренных в диапазоне частот 30–108 МГц, не более 3,5 по отношению к волновому сопротивлению [1]. Заметим, что характеристика КСВ измерена в специально-оборудованной экранирующей камере без учета внешних воздействий (электромагнитной совместимости с бронетехникой, на которой она установлена).

Основная часть. В связи с основными предназначениями приведенных радиостанций целесообразно произвести измерения непосредственно на технике, что соответствует реальным условиям эксплуатации средств связи для обмена информациями между абонентами. На рисунке 2, представлены частотные зависимости входного сопротивления и КСВ антенны БШДА, расположенной непосредственно на бронетанковой технике.

Рисунок 2 - Антенна БШДА установленная на мобильной технике (а) и бронетехнике (б)

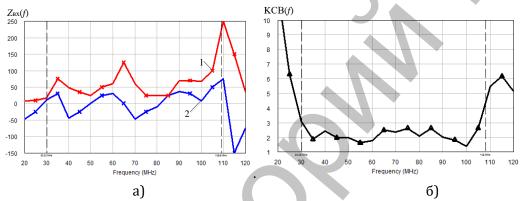


Рисунок 2 – Функция реальной (1) и мнимой (2) частей импеданса (a) антенна БШДА, а также ее характеристика КСВ (б)

Из функций реальной и мнимой частей импеданса (рисунок 2 а) антенны БШДА следует, что данные функции сильно зависят от частоты и имеют резко изменяющийся характер. Также из представленных характеристик на рисунке 2 б следует, что требуемое значение КСВ (не более 3,5) не обеспечивается вблизи верхней граничной частоты, что приводит к ухудшению обмена информации между абонентами на данных частотах. По этой причине важной является задача широкополосного согласования (введение дополнительной цепи коррекции) данной антенны с приемо-передающей частью радиотехнической системы. Для синтеза корректирующей цепи предлагается использовать методику структурно-параметрического синтеза на основе комплексного критерия соответствия идеальному фильтру представленную в [2]. Данный критерий записывается в следующем виде [2]:

$$\left|1 - \max \left| \frac{1}{\omega_{\rm B} - \omega_{\rm H}} \int_{\omega_{\rm H}}^{\omega_{\rm B}} K(\omega, b_i) e^{j\omega t} d\omega \right| \le \min_{b_i} = \delta,$$
(1)

где $K(\omega, b_i)$ – искомая нормированная функция передачи цепи согласования;

 δ – допустимое отклонение главного лепестка интегральной функции; $\omega_{{
m H}i}$, $\omega_{{
m B}i}$ – нижняя и верхняя граница полосы согласования.

На рисунке 3, показана схема корректирующей цепи и ее зависимость КСВ. В качестве сравнения на рисунке 3 б представлена зависимость КСВ без коррекции.

Из рисунка 3, следует, что применение структурно-параметрического синтеза на основе комплексного критерия соответствия идеальному фильтру в полосе пропускания

позволило синтезировать корректирующую цепь третьего порядка, обеспечивающую максимальное значение КСВ, не превышающее 2,9 в заданной полосе частот.

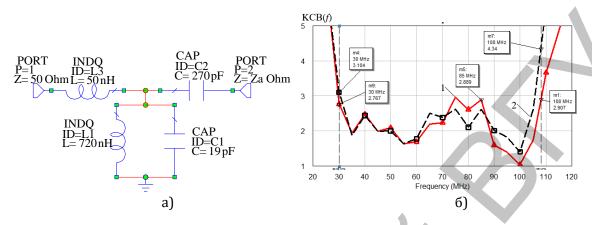


Рисунок 3 – Схема корректирующей цепи (a) и ее характеристика КСВ (1) и без корректирования (2)

Заключение. Таким образом, экспериментально подтверждено, что при расположении антенны БШДА непосредственно на технике приводит к изменению ее импеданса во всей полосе пропускания, а вблизи верхней граничной частоты изменения весьма значительные. Наличие штатной согласующей цепи в данной антенне не позволяет обеспечить требуемое максимальное значение КСВ≤3,5 в рабочей полосе частот, что, в свою очередь, приводит к падению уровня коэффициента передачи мощности и, соответственно, уменьшению дальности связи.

В связи с этим для обеспечения устойчивой радиосвязи предлагается использовать корректирующую цепь, рассчитанную с применением методики структурнопараметрического синтеза корректирующей цепи на основе основе комплексного критерия соответствия идеальному фильтру, обеспечивающую максимальное значение КСВ не более 2,9 в рассматриваемой полосе частот.

1. Средства связи и боевая экипировка [Электронный ресурс]. – Режим доступа http://t-c.by/wp-content/uploads/2019/10/Katalog-TVN.pdf. – Дата доступа: 09.09.2020.

КРАТЧАЙШИЕ БИССЕКТОРЫ МНОГОУГОЛЬНИКОВ

Круталевич М.В.,

студент УО «БГПУ имени Максима Танка», г. Минск, Республика Беларусь Научный руководитель – **Гриб Н.В.,** канд. физ.-мат. наук, доцент

Изопериметрическая задача о поиске фигуры наибольшей площади, граница которой имеет заданную длину, – одна из известнейших экстремальных задач древности. Ее решением является круг, впервые это доказал Зенодор (ІІ век до н. э.) в своём трактате «Об изопериметрических фигурах». Первое математически строгое с современной точки зрения решение было получено лишь во второй половине XIX века Германом Шварцем (см., например, [1]).

Следуя Д. Пойа [1, стр. 202], биссектором плоской фигуры назовем дугу с концами на ее границе, делящую фигуру на две части равной площади.

Задача о нахождении кратчайшего биссектора фигуры является родственной изопериметрической и имеет очевидный прикладной смысл. Например, нужно разделить участок земли на два равновеликих участка забором (не обязательно прямолинейным)

^{2.} Шашок В.Н., Коноплицкий А.С. Методика определения структуры и параметров многополосных согласующих цепей на основе внутриполостного комплексного критерия соответствия идеальному фильтру. Доклады БГУИР. −2020. – Т. 18, № 4. – С. 62–70.