

Рисунок 1 – Динамика активности жужелиц в биоценозе № 1.

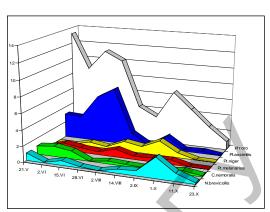


Рисунок 2 – Динамика активности жужелиц в биоценозе № 2.

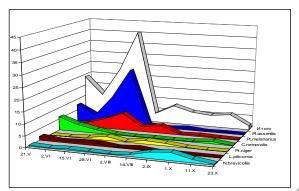


Рисунок 3 – Динамика активности жужелиц в биоценозе № 3.

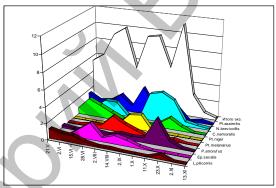


Рисунок 4 – Динамика активности жужелиц в биоценозе № 4.

Заключение. Динамика численности жужелиц в каждом биоценозе зависит от типов активности жужелиц, природных факторов и уровня антропогенной нагрузки. Наиболее широко представлены виды с поздневесенним типом активности.

- 2. Клауснитцер, Б. Экология городской фауны, пер. с нем. М.: Мир, 1990. 246 с.
- 3. Berghe, E. On pitfall trapping invertebrates // Entomol. News. −1992. −103, № 4. − P. 149–156.
- 4. Солодовников, И.А., Василевич, В.В. Водобродки (Coleoptera: Hydraenidae) овражно-балочной системы г. Витебска и его окрестностей / И.А. Солодовников, В.В. Василевич // Актуальные проблемы охраны животного мира в Беларуси и сопредельных регионах: материалы I Международной научно-практической конференции, минск, Беларусь, 15–18 октября 2018 г. / ред. колл.: А.В. Кулак [и др.]. Минск: ГНПО «НПЦ НАН Беларуси по биоресурсам», 2018. С. 355–358.

ИССЛЕДОВАНИЕ ИНВАЗИИ МИКОПАТОГЕНА ХВОЙНЫХ DOTHISTROMA SEPTOSPORUM НА СЕВЕРЕ БЕЛАРУСИ

Василевич В.В.*, Пирханов Г.Г.**,

*студент 4 курса, ** магистрант ВГУ имени П.М. Машерова, г. Витебск, Республика Беларусь Научный руководитель – Колмаков П.Ю., канд. биол. наук, доцент

Проблема инвазии патогенных заболеваний хвойных пород, вызываемых высокоспециализированными видами грибов, вызывает тревогу [1]. Эти фитопатогены наносят вред всем возрастам и типам насаждений, как искусственным, так и естественным. Искусственные насаждения и молодняки более подвержены инфекциям из-за своей гомогенности. Важность рассматриваемой проблемы состоит в недостаточной изученности, а также, отсутствии глобального представления о повсеместной распространённости фитопатогенов и недостаточной осведомлённости о жизненных циклах видов высокоспециализированных грибов.

На протяжении последнего столетия климат территории Республики Беларусь был стабилен. До 1989 года периоды потепления сменялись равными по силе периодами похолоданий. Потепление нача-

лось с резким повышением температуры воздуха зимой [2]. Особенность нынешнего потепления не только в его продолжительности, но и в более высокой температуре воздуха и повышенной влажности, которые, в среднем, превысили климатические нормы, что не может не сказываться на распространении патогенов хвойных, учитывая их биологию (Рис. 1).

До периода потепления территория Беларуси была разделена на три агроклиматические области: Северную, Центральную и Южную (Рис.1а). В результате потепления произошел распад Северной агроклиматической области и появилась новая, более теплая агроклиматическая область на юге Полесья, что в совокупности изменило обычные условия. (Рис. 16).

Целью работы является адаптация методики отслеживания жизненных циклов фитопатогена Dothistroma septosporum в северной части Республики Беларусь.

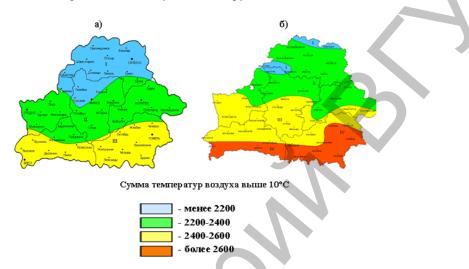


Рисунок 1 – Изменение границ агроклиматических областей Беларуси [2].

Материал и методы. Сбор материала осуществлялся маршрутным методом с 2.10.18 по 08.12.19, руководствуясь визуальным наличием симптомов фитопатогенов «red band needle blight», с последующим световым микроскопированием образцов для предварительного подтверждения вида, вызывающего симптомы. Для этого изучались микропрепараты со сформированными конидиеносцами.

Результаты и их обсуждение. В ходе работы было обнаружено наличие на територии Витебской области вида *Dothistroma septosporum*, который является карантинным видом фитопатогенов в ближайшем зарубежье (Рис. 2). Собраны гербарные образцы с более чем 40 точек в северной части Беларуси. Исследования проведены в административных районах Витебской области: Витебский, Шумилинский, Полоцкий, Городокский, Россонский, Глубокский, Шарковщинский, Миорский Браславский.

Рисунок 2 – Расположение точек сбора гербарных образцов

Во время сбора материала (сезон 2018-2019 года) было зарегистрировано 9 генераций *Dothistroma* septosporum (Табл. 1).

Таблица 1 – Точки сбора гербарных образцов

ID	Расположение точки сбора	Температура сбора (°C)	Дневная вариация температуры сбора (°C)	Вид хозяина фитопатогена
Dot 8 27-10-18	55.269607, 27.694576	8	2–10	Pinus sylvestris
Dot 9 30-10-18	55.149204, 30.189839	2	2–6	Pinus sylvestris
Dot 10 4-11-18	55.836907, 29.956745	3	2–6	Pinus sylvestris
Dot 11 4-11-18	55.838476, 29.940695	3	2–6	Pinus sylvestris
Dot 12 4-11-18	55.835738, 29.93444	3	2–6	Pinus sylvestris
Dot 13 4-11-18	55.832158, 29.928937	3	2–6	Pinus sylvestris
Dot 14 4-11-18	55.82509, 29.916873	4	2–6	Pinus sylvestris
Dot 15 4-11-18	55.831481, 29.913761	4	2–6	Pinus sylvestris
Dot 16 4-11-18	55.833943, 29.900708	4	2-6	Pinus sylvestris
Dot 17 11-11-18	55.149204, 30.189839	2	-1-2	Pinus sylvestris
Dot 18 28-10-18	55.140592, 29.748716	2	-1-2	Pinus sylvestris
Dot 19 28-11-18	55.148747, 30,210574	-5	-6 - (-3)	Pinus sylvestris
Dot 20 1-12-18	55.421047, 28.551076	-10	-12 – (-18)	Pinus sylvestris
Dot 21 1-12-18	55.113442, 27.6334	-7	-5и – (-11)	Pinus sylvestris
Dot 22 1-12-18	55.154942, 27.667428	-7	-5 – (-11)	Pinus sylvestris
Dot 23 15-12-18	55.271603, 29.629271	2	-2 - (-3)	Pinus sylvestris
Dot 24 27-3-19	53.893535, 27.570297	8	4–12	Pinus mugo
Dot 25 28-04-19	55.526813, 28.828561	17	3–19	Pinus sylvestris
Dot 26 28-04-19	55.158763, 27.664221	18	3–19	Pinus sylvestris
Dot 27 28-04-19	55.149585, 27.669804	19	3–19	Pinus sylvestris
Dot 28 28-04-19	55.315385, 27.224057	17	3–19	Pinus sylvestris
Dot 29 29-04-19	55.473214, 26.750446	8	4–19	Pinus sylvestris
Dot 30 29-04-19	55.656322, 27.136014	18	4–19	Pinus sylvestris
Dot 31 29-04-19	55.679063, 27.170602	18	4–19	Pinus sylvestris
Dot 32 29-04-19	55.682263, 27.160831	18	4–19	Pinus sylvestris
Dot 33 29-04-19	55.683832, 27.15498	18	4–19	Pinus sylvestris
Dot 34 29-04-19	55.625904, 27.09415	18	4–19	Pinus sylvestris
Dot 35 29-04-19	55.567366, 27.10571	18	4–19	Pinus sylvestris
Dot 36 29-04-19	55.605869, 27.068772	18	4–19	Pinus sylvestris
Dot 37 29-04-19	55.604527, 27.069026	17	4–19	Pinus sylvestris

Учитывая, что в результате потепления произошел распад Северной агроклиматической области, точки сбора выбраны с учётом особенностей биологии видов, для равномерного захвата территории.

Заключение. Точки сбора видов подтверждают наше предположение о влиянии смещения агроклиматических областей, ввиду изменения климата на территории Беларуси. Принимая во внимание изменение границ агроклиматических областей Республики Беларусь, Витебская область является идеальным «плацдармом» для изучения инвазии фитопатогенов.

- 1. Головченко Л.А. Новый инвазивный вид *Mycosphaerella dearnessii* в составе микобиоты хвои сосны на территории Беларуси / Л.А. Головченко, Н.Г. Дишук, С.В. Пантелеев, О.Ю. Баранов // Вес. Нац. акад. навук Беларусі Сер. біял. навук. 2020. Т. 65, № 1. С. 98-105.
- 2. http://www.pogoda.by/press-release/?page=528 Дата доступа: 25.02.2020.

ОСОБЕННОСТИ ДРЕВЕСНОЙ РАСТИТЕЛЬНОСТИ ЛОШИЦКОГО ПАРКА Г. МИНСКА

Витковский Е.В.,

студент 5 курса ВГУ имени П.М. Машерова, г. Витебск, Республика Беларусь Научный руководитель – Морозова И.М., канд. биол. наук, доцент

Лошицкий парк является единственным сохранившимся в г. Минске уникальным садовопарковым комплексом, имеющий статус республиканского историко-культурного достояния.

С 1922 по 1925 г. в Лошице была организована исследовательская станция Белорусского государственного садово-огородного института (БелНИИ плодовых и овощных культур), на базе которой, в 1925 г. по инициативе академика Н.И. Вавилова, создано и работало под его руководством – Белорусское отделение Всесоюзного института прикладной ботаники и новых культур. Фактически, Лошица стала тем местом, откуда берет свое начало белорусская научная селекция.

Лошицкий усадебно-парковый комплекс расположен на южной окраине Минска в Ленинском районе. В южной части Лошицкого парка протекает река Лошица (приток реки Свислочь), а с восточной – река Свислоч.

Лошицкий парк интересен и поражает биоразнообразием. Историки и археологи установили уникальную особенность парка: около 10 тысяч лет назад здесь проходила граница, на которой остановился последний ледник. Поэтому в этих местах наблюдаются 32 почвенные разновидности и более чем 400 биологических видов (деревьев, кустарников, трав, насекомых, животных и птиц). Поэтому изучение древесной растительности выше указанного парка имеет, несомненно, большое значение.

Цель работы: изучить древесную растительность Лошицкого парка, установить видовой состав растений.

Материал и методы. Материалом исследования являлись деревья и кустарники Лошицкого парка. При обследовании территории дендрария Лошицкого парка осуществлялся подсчет экземпляров древесных растений и определялся видовой, состав семейств. Определение растений проводили согласно [1; 2]. Сбор материала осуществлялся маршрутным методом.

Результаты и их обсуждение. В ходе исследования нами выявлено, что на территории парка произрастает 92 таксонов древесных пород.

Изучали соотношение жизненных форм растений. Нами установлено, что на долю деревьев в Лошицком усадебно-парковом комплексе приходится 57% видового состава, а на долю кустарников – 43%. Установлено, что 53% видов деревьев и кустарников парка являются аборигенными видами, а 47% – экзотами.

В дендрарии Лошицкого парка, количество видов отдела Покрытосеменные преобладают над количеством видов отдела Голосеменные. Установлено, что количество представителей отдела Покрытосеменные составляет 86% от всей коллекции, соответственно, на долю представителей отдела Голосеменные приходится 14%.

Отдел Голосеменные представлен такими семействами как *Pinaceae* с наиболее многочисленными родами *Pinus*, *Picea*, *Abies*, *Larix* и *Cupressaceae*, представленное родом *Juniperus* и *Thuja*.

Установлено что в Лошицко-усадебном парковом комплексе наиболее многочисленным среди покрытосеменных является семейство *Rosaceae*, насчитывающее 12 родов. Наиболее полно из этого семейства представлены такие роды, как *Prunus* (6 видов), *Spiraea* (5 видов), *Crataegus* (3 вида) и *Rosa* (3 вида). Такие роды как *Sorbus*, *Pyrys*, *Malus*, *Chaenomüles*, *Cotoneóster*, *Potentilla*, *Aronia* и *Physocarpus* представлены одним – двумя видами.

Семейство Sapindaceae представлены двумя родами. Более многочисленный род Acer (6 видов): клен явор (Acer pseudoplatanus), клен ясенелистный (A. negundo), клен серебристый (A. saccharinum), клен остролистный (A. platanoides), клен Гиннала (A. ginnala). Род Aesculus представлен одним видом – каштан конский обыкновенный (Aesculus hippocastanum).