Результаты и обсуждение. В результате анализа мест произрастания *Solidago canadensis* L. было обнаружено 84 вида растений. Подавляющее большинство видов относится к классу *Dicotyledones* (69 видов, 82% от общего числа видов), отделу *Magnoliophyta*. По количеству преобладает семейство *Asteraceae* (19 видов, 23% от общего числа видов).

Также часто на пробных площадках встречаются представители семейства *Gramineae* (10 видов, 16% от общего числа видов), *Fabaceae* (8 видов, 13% от общего числа видов) и *Rosaceae* (8 видов, 13% от общего числа видов).

Меньшим распространением характеризуются представители семейств *Polygonaceae* (6%), *Umbelliferae* (5%), *Lamiaceae* (5%), *Betulaceae* (3%), *Salicaceae* (3%), *Onagraceae* (3%), *Malvaceae* (3%). Одну четвёртую от общего числа видов составляют растения, которые встречались лишь в единичных экземплярах. Это представители семейств *Crassulaceae*, *Asparagaceae*, *Pinaceae*, *Typhaceae*, *Plantaginaceae*, *Primulaceae*, *Cyperaceae*, *Hypolepidaceae*, *Euphorbiaceae*, *Oleaceae*, *Rubiaceae*, *Chenopodiaceae*, *Ranunculaceae*, *Urticaceae*, *Cannabaceae*, *Campanulaceae*, *Aceraceae*, *Hyporicaceae*, *Caryophyllaceae*, *Balsaminaceae* и *Amaranthaceae*.

Таблица – Соотношение семейств растений на пробных площадках.

Семейство	Процент
Asteraceae	23%
Gramineae	16%
Fabaceae	13%
Rosaceae	13%
Polygonaceae	6%
Umbelliferae	5%
Lamiaceae	5%
Betulaceae	3%
Salicaceae	3%
Onagraceae	3%
Malvaceae	3%
Другие семейства	25%

После анализа полученных данных и сравнения пробных площадок, можно предположить, что чаще всего в нарушенных сообществах золотарника канадского можно обнаружить полынь полевую (Artemisia campestris L.), клевер луговой (Trifolium pratense L.) и клевер ползучий (Trifolium repens L.). Несколько реже встречаются вейник наземный (Calamagrostis epigeios (L.) Roth.), овсяница (Festuca sp.), мать-и-мачеха обыкновенная (Tussilago farfara L.), осот полевой (Sonchus arvensis L.), люцерна хмелевидная (Medicago lupulina L.) и подорожник большой (Plantago major L.).

Заключение. Флористический состав изученных сообществ растений, в которых произрастает *Solidago canadensis* L. или которые он образует, представлен 84 видами растений. Большая часть из них относится к классу *Dicotyledones*, отделу *Magnoliophyta*. По количеству преобладает семейство *Asteraceae*, *Gramineae*, *Fabaceae* и *Rosaceae*.

1. Гельтман, Д.В. Понятие «инвазивный вид» и необходимость изучения этого явления/ Д.В. Гельтман// Проблемы изучения адвентивной и синантропной флоры в регионах СНГ: материалы научн. конф., М./Изд-во Бот. Сада МГУ; Тула: Гриф и К°; редкол.: В.С. Новиков и А.В. Щербаков. – 2003. – С. 35-36.

ЭКОЛОГИЧЕСКИЙ АНАЛИЗ И ПОРЯДОК ОБРАЩЕНИЯ С ОТХОДАМИ ПРОИЗВОДСТВА НА ПРИМЕРЕ СТРОИТЕЛЬНОГО ПРЕДПРИЯТИЯ «ЧУП НАСТАТ-ДЕНТ»

Еремова Т.Р.

студентка 3 курса ВГУ имени П.М. Машерова, г. Витебск, Республика Беларусь Научный руководитель — Литвенкова И.А., канд. биол. наук, доцент

С каждым годом из-за строительства инфраструктурных объектов в крупных городах увеличивается количество строительных отходов. Большая часть отходов вывозится на полигоны, загрузка которых приближается уже к критической отметке [2].

Сейчас тема утилизации строительного мусора очень актуальна. Ежегодно в Беларуси образуется 15–17 млн. тонн строительных отходов. Строительный мусор имеет 4-й класс опас-

ности, поэтому вывоз и утилизацию строительного мусора необходимо производить с соблюдением всех правил безопасности.

Согласно действующему законодательству вывоз крупногабаритного мусора в столице и других городах Республики Беларусь осуществляется только на специально оборудованные полигоны. Далее захоронение отходов выполняется согласно установленным стандартам. Но сейчас главной проблемой утилизации строительных отходов становится не транспортировка, а вторичное использование и экологичное захоронение [1].

Цель работы — экологический анализ и порядок обращения с отходами производства на примере строительного предприятия (ЧУП «НАСТАТ-ДЕНТ»).

Материал и методы. Материалом исследования были статистические данные из пояснительной записки проектной документации «Капитальный ремонт жилого дома № 5 по проспекту Мира в г. Могилеве». Использовались аналитический метод, метод классификаций, сравнительно сопоставительный, для определения веществ по классам опасности и их токсичности [3]. Данные брались из учетных данных предприятия, систематизировались и записывались в таблицу в зависимости от степени их токсичности и класса опасности, рассчитывались по фактическим объемам образования отходов.

Результаты и их обсуждение. В ходе анализа инвентаризации ЧУП «Настат-Строй» на строительном объекте: «Капитальный ремонт жилого дома № 5 по проспекту Мира в г. Могилеве» выявлено 19 видов отходов, относящихся к 3-4 и неопасным классам.

Таблица – Структура отходов производства ЧУП «Настат-Строй»

Код	Наименование отхода	Класс опасности	Количе-	
отхода			$ctbo(t/m^3)$	
Неопасный класс				
3142701	Отходы бетона	Неопасные	42т	
3143601	Отходы цемента в кусковой форме	Неопасные	4 _T	
<u>3511005</u>	Проволока стальная	Неопасные	0,2т	
3991200	Бетонные стеновые изделия, столбы, черепица бетонная испорченные или загрязненные	Неопасные	2,5т	
3141105	Песок	Неопасные	5т	
3140900	Строительный щебень (бут)	Неопасные	15т	
<u>3140705</u>	Бой кирпича керамического	Неопасные	5т	
3-й класс опасности				
<u>1871500</u>	Упаковочный материал с вредными загрязнениями (преимущественно неорганическими)	3-й класс	0.00025т	
<u>5274907</u>	Вода после смывки фасадов с жидкими видами сырья, аппаратом высокого давления	3-й класс	34m ³	
	4-й класс опасности			
3122300	Пыль, зола, съемы прочих плавильных процессов	4-й класс	240m ³	
1720100	Деревянная тара и незагрязненные древесные отходы	4-й класс	1,5m ³	
3140501	Отходы стекловолокон грубые	4-й класс	0,3т	
3140825	Отходы стекла "Триплекс"	4-й класс	0,03т	
3510602	Металлическая тара, загрязненная ЛКМ	4-й класс	0,1т	
1720102	Изделия из натуральной древесины, потерявшие свои потребительские свойства	4-й класс	0,5м ³	
1870203	Отходы бумажной клеевой ленты	4-й класс	0.003т	
1870500	Отходы рубероида	4-й класс	17т	
1870604	Отходы упаковочной бумаги загрязненные	4-й класс	0,4т	
<u>1720200</u>	Древесные отходы строительства	4-й класс	4m^3	

Качественный и количественный анализ отходов выявил 19 видов отходов: неопасный класс (H/O) – 7 отход, 3 класс опасности – 2 отхода, 4 класс опасности – 10 отхода (см. таблица).

Процентное соотношения отходов по классам опасности составило :H/O класс -36,8%;3 класс опасности -10,5%;4 класс опасности -52,67%.

Общее количество отходов по классам: Н/О класс образовалось -73,7 т/год; отходы 3 класса опасности -0,00025т/год , 34м 3 ; отходы 4 класса опасности -17,833 т/год, 246 м 3

Больше всего отходов на строительном предприятии выявлено – H/O классе опасности 73,7 т/год, меньше всего в 3 классе опасности – 0,00025 т/год, 34 м³.

Анализ образования и утилизации отходов производства на примере строительного предприятия ЧУП «Настат-Строй» показал, что большая часть отходов сжигается, либо подлежит захоронению на полигонах твердых коммунальных отходов (ТКО). Максимальное количество образования отходов при строительной деятельности данного предприятия принадлежит отходу: 3142701 Отходы бетона (42 т/год), основной метод утилизации — захоронение на полигоне ТКО г. Могилев. Минимальное количество образования отходов при строительной деятельности данного предприятия принадлежит отходу 1871500 Упаковочный материал с вредными загрязнениями (преимущественно неорганическими) (0.00025 т/год), основной метод утилизации — захоронение на полигоне ТКО г. Могилев. Выявлено процентное соотношение методов утилизации отходов: Неопасный класс 100%-утилизация; 3 класс опасности 80%-утилизация, 20%-переработка; 4 класс опасности 40%-сжигания, 20%-захоронение, 40%-переработка

Заключение. Правильно проведенный экологический учет журналов о внесении отходов, их паспортизация и утилизация непосредственно в процессе строительной деятельности, помогает правильно анализировать отходы при их утилизации по классам опасности.

- 1. <u>Закон РБ «О техническом нормировании и стандартизации», глава 30</u> Перечня продукции, услуг, персонала и иных объектов оценки соответствия, подлежащих обязательному подтверждению соответствия в Республике Беларусь, утвержденного постановлением Госкомстандарта РБ от 30.07.2004 № 35, и соответствующие стандарты.
 - 2. Субботин В.И. Строительные отходы. Академии наук. Т. 71. № 12, 2001. С. 1059–1068.
 - 3. Коган Б.И. Экологические. М.: Изд-во АН СССР, 1961. С. 323.

ВЛИЯНИЕ ГИПЕРТЕРМИИ РАЗНОЙ ПРОДОЛЖИТЕЛЬНОСТИ НА СОДЕРЖАНИЕ ТБК-АКТИВНЫХ ПРОДУКТОВ В ГЕПАТОПАНКРЕАСЕ ПРЕСНОВОДНЫХ ЛЕГОЧНЫХ МОЛЛЮСКОВ

Зайцева В.В., Овчинникова А.А.

студентки 4 курса ВГУ имени П.М. Машерова, г. Витебск, Республика Беларусь Научный руководитель – Толкачева Т.А., канд. биол. наук, доцент

Температура является важнейшим экологическим фактором среды, от которого напрямую зависят обмен веществ и развитие гидробионтов. Глобальное потепление отражается на состоянии водных и наибольшей степени пресноводных сообществ. Изменение температурного режима водоема приводит к смене ключевых параметров среды обитания, таких как газовый режим и растворимость веществ, в том числе и токсичных компонентов, поступающих в водоем с грунтовыми и сточными водами. Повышенная температура может усилить негативное различных компонентов, в том числе и ксенобиотиков на организмы, населяющие водные экосистемы [1].

Легочные пресноводные моллюски: большой прудовик (Lymnaea stagnalis) и катушка роговая (Planorbarius corneus) с разными переносчиками кислорода (медь-содержащий гемоциании и железо-содержащий гемоглобин) представляют собой тест-организмы для фармакодинамических и биоэкологических исследований. Наиболее часто эти животные используются для экологического тестирования загрязнений природных и искусственных водоемов, действия различных физических, химических и биологических факторов [2]. Повышение температуры изменяет количество кислорода в водной среде, что сказывается на процессах свободнорадикального окисления. Показатели перекисного окисления липидов (ПОЛ) являются важными маркерами воздействия неблагоприятных факторов окружающей среды, поэтому целью работы стало определение содержания малонового диальдегида в гепатопанкреасе двух видов моллюсков при действии гипертермии разной продолжительности.

Материал и методы. В работе использовались два представителя легочных моллюсков – большой прудовик (*L. stagnalis*) и катушка роговая (*P. corneus*). Моллюсков собрали вручную, затем подвергли 15-суточной акклиматизации: объем аквариумов 100 л, плотность посадки 3 экземпляра на литр, температура воды — 20—22°С, рН 72,—7,7. Ежесуточно осуществлялась замена 1/3 воды. Животных кормили свежими листьями одуванчика или зеленого салата. Для создания условий гипертермии особи выдерживались от 1 до 16 часов в термостате при температуре 35°С. Контролем служили особи, содержащиеся в отстоянной водопроводной воде при комнатной температуре. Об уровне ПОЛ судили по накоплению ТБК-активных продуктов, ко-