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CHAPTER 1. FOUNDATIONS OF TOPOLOGY 

§1. Notion of the metric space. Distance between sets.  
Diameter of a set 

In the Euclidean space  En distance between points  P(x1, x2,… xn),  Q(y1, 
y2,… yn)  is calculated by formula 

ρ(P, Q) = (y1– x1)2 + (y2 – x2)2 +… + (yn – xn)2 , 

If coordinates of points are given in the orthonormal coordinate system. We can 
consider this distance as a function, which match a number  ρ(P, Q)  to pair of 
point  P  and  Q. Function  ρ  has the following properties: 

1. ρ(P, Q) =ρ(Q, P) (symmetry); 
2. ρ(P, Q) + ρ(Q, R) ≥ ρ(P, R)  (triangle inequality); 
3. ρ(P, Q) ≥ 0  и  ρ(P, Q) = 0  ⇔  P = Q . 

Definition 1.1.  Let now  M  be an arbitrary set, elements of  which we 
call points. Let  function  ρ  be defined on set  M, which match a number  ρ(P, 

Q)  to two points  P, Q∈M; we call this number the distance between  P  and  Q. 
And let the axioms 1, 2, 3 are true. Then pair  (M, ρ)  is called a metric space, 
and function  ρ  is called metrics. 

Example 1.1. Let  V  be an arbitrary subset of Eucledean space  En. We 
will consider distance between  P, Q∈V  the same as in the space. Then  (V, ρ)  
is a metric space. Such metrics  ρ is called  induced from  En. 

 Example 1.2. Let  S2  be a sphere in 
three-dimensional geometric space. Distance  ρ1  

between  P, Q∈ S2  is defines as the length of 
the shortest curve on the surface, which con-
nects  P  and  Q. I is well-known fact, that this 
curve is the arc of the big circle (fig. 1.1). 

We can also define the distance as in ex-
ample 1: ρ(P, Q)  is the length of chord  PQ. 
Then  (S2, ρ1)  and  (S2, ρ) — are different metric 
spaces. 

Example 1.3.  Let’s define the distance between two point  A(x1, y1),  
B(x2, y2)  on the plane by formula  ρ2(A, B) = |x2− x1| + |y2− y1|. In this case ρ2(A, 
B)   is equal to the length of the broken line  ACB, which is drawn in figure 1.2. 
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 Exercise. 1. Check it yourself, that all the 
axioms of  metric space are true for metrics  ρ2 . 

Definition 1.2. Set U(P,ε)= 
={Q∈M |ρ(P,Q)<ε} is called  an open ball in 
metric space  (M, ρ). In particular, it can be an 
open circle on the plane, or an interval on the line.  

Definition 1.3.  Diameter of set  V  in met-
ric space  (M, ρ)  is the exact upper boundary of 
distances between points of this set: 

d(V) = sup
P,Q∈V

 ρ(P, Q). 

Definition 1.4.  Distance between two sets  V, W  is the exact lower bound-
ary of distances between points of this sets: 

ρ(V, W) = inf
P∈V,Q∈W

 ρ(P, Q). 

In particular, if one set consists of one point, then we get definition of distance 
from point to set. 

Why do we have  supremum, but not maximum, infimum, but not mini-
mum? Let’s see on the example. 

Example 1.4. Let  U  an be open (with-
out boundary) circle of radius 1 on the plane 
with the center at the origin, and  W = Q(2,0)  
(figure 1.3). Then  d(U) = 2, although there are 
no such points in U  distance between which is  
2. Thereby the maximum is not  reached. 
Analogously,  ρ(Q, U) = 1 , although there is no 
such points  P∈U, that holds  ρ(Q, P) = 1 . 
Thereby the minimum is not  reached.  

We shell note that if sets intersect, then distance between them is equal 
zero. The converse is not true. For instance, if  W  is straight line  x = 1  (figure 
1.3), then  ρ(U, W) = 0 , but  U W=∅. 

Definition 1.3.  A set  V  in metric space  (M, ρ)  is said to be bounded, if  
d(V)<∞. We shell note, that metric space itself can be bounded like   
(S2, ρ1), for instance. 

Exercise. 2. What diameters of metric spaces (S2, ρ1)  и  (S2, ρ) are equal 
to? 

fig.1.3 
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§2. Open sets. Notion of topology space 
Definition 1.4.  Let  V be some set in metric space  (M, ρ). Point  P∈V  is 

said to be  an inner point of this set, if it is included in  V  along with some open 
ball containing it (figure 1.4), i.e. if there is suck  ε>0, that  U(P,ε)⊂V. 

 Definition 1.5.  Set  V⊂(M, ρ)  is said to be 
open, if all the points of this set are the inner points 
for this set. The empty set is considered open. 

According to the definition metric space   
(M, ρ)  itself is open. 

Definition 1.6.  Set  V  in Euclidean space is 
called connected, if for any points  P, Q∈V  there is 
a continuous curve  γ⊂V, connecting  P  and  Q.  

This usual definition of a connected set множества has a significant 
drawback: we still don’t know what «a continuous curve » is, and even we don’t 
know what a curve is. Moreover, this definition is not suitable for an arbitrary 
metric space. Mathematically more precise definition requires some explanation. 

 Definition 1.7.  Set  V  in Euclidean space is called disconnected, if it can 
be represented as a union  V=V1V2  of two disjoint sets, each of which is open in 
V  (in the induced metrics). 

 Imagine that a set consists of two 
disjoint parts  V1  и  V2, which are not open  
the metric space, and  P   is a point on the 
boundary of  V1. Consider metric space   
(V, ρ)  with metrics induced from  M. Then 
ball  U(P,ε)  in (V, ρ)  looks like it is shown 
in figure 1.5. According to the definition 
point  P  turns out to be the inner point of 
set  V1. Similarly, this is true for an arbitrary 
point of the set V1. Thereby,  V1  turns out to be open in  V. This situation is im-
possible if   V  connected in an intuitive sense of the word. 

Definition 1.8. Set  V  in Euclidean space  (M, ρ)  is called connected, if it 
is not disconnected. An open connected set is called a domain. Any domain con-
taining point  P  is called a neighborhood of this point. 

Theorem 1.1.  I.  The union of any finite or infinite number of open sets is 
an open set. 

II.  The intersection of any finite number of open sets is an open set. 
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Proof.  I.  Suppose that  V1, V2, V3,… – are open sets There is at least one 
of the sets  V1, V2, V3,… that contains  P. Let it be  Vi . This set is open. There-
fore there is an open ball  U(P,ε)⊂Vi . But in this case  U(P,ε)⊂V. I.e.  P  is an 
inner point of   V. Since  P  is an arbitrary point  of  V, this set is open. 

II.  Suppose that  V1, V2,…, Vn  are open sets and   V = V1V2…Vn . 
Consider arbitrary point  P∈V. Then  P∈Vi  for all  i = 1 , 2 , … , n . Since all the 
sets V1, V2,…, Vn  are open, there are such numbers  ε1, ε2, …, εn  that  
U(P,ε i)⊂Vi . Let’s take  ε= min{ε1, ε2, …, εn}. Then U(P,ε)⊂Vi  for all 
i = 1 , 2 , … , n . It means, that  U(P,ε)⊂V. Since  P  is an arbitrary point  of  V, 
this set is open. 

The following example shows that the intersection of an infinite number 
of open sets may not be open. 

Example 1.5. Let 

V1= (–2; 2),  V2 = (–1,5; 1,5),  V3 = 






– 43 ; 4

3  ,… ,  Vi =




– 1 – 1

i
 ; 1 + 1

i
 , … 

Then  
i =1

∞
Vi = [–1, 1]. 

Definition 1.9. It is said that the system of all open subsets of a metric 
space  (M, ρ)  forms the topology of this space. This system is indicated by the 
letter  τ. 

We have found that the set of subsets  τ  has the following properties: 
I.  V1, V2, V3,…∈τ   ⇒  

i ∈J
Vi∈τ ( J – is the set of all indices); 

II.  V1, V2, V3,…, Vn∈τ   ⇒  
i =1

n
Vi∈τ; 

III.  ∅∈τ, M∈τ. 

Definition 1.10. Let  M  be  an arbitrary set, on which a system of subsets  
τ, is given satisfying axioms  I, II, III. Then a pair  (M, τ)  is called topological 
space, and  τ  is called topology. The sets in  τ  will be called open. 

We see that any metric space is topological one. The topology defined on 
it by the metric  ρ, is called the metric topology. 

Let  (M, τ)  be topological space, and  F  be a subset in  M. Then we can 
define a topology on  F , i.e. turn  F  into a topological space as follows. A sub-
set  V⊂F  is called open, if there is set  W, open in  M,  such that  V = WF. 
Such topology on  F  is called induced from  (M, τ). 
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 The most important case for 
us is when F is a surface in three-
dimensional space (figure 1.6). It 
turns out that we can determine what 
an open set on a surface is.  

 
§3. Closed sets. Closure of set 

Definition 1.11. Point  P  is called adherent point of set  W, if any its 
neighborhood intersects   W.  This is equivalent to the fact that  ρ(P,W) = 0 . 
Subset  W⊂ (M, τ)  is called closed, if it contains all its adherent points. 

Definition 1.12. Subset  W  in topological space  (M, τ)  is called closed, if 
its complement  M\W  is open in  M. 

Let’s prove, that these definitions are equivalent. 
Suppose, that set  W  contains all its adherent points and  V=M\W. Let  

P∈V  be arbitrary point. Then  P  is not an adherent point, and it means that 
there is some neighborhood  U  of this point, that does not intersects  W i.e.  
U⊂V. Since  P  is an arbitrary point  of  V, this set is open. 

Conversely. Suppose that  V=M\W  is open set and   P  is an adherent 
point of set  W.  We shell prove, that  P∈W.  Suppose that is not true, i.e.  P∈V. 
Since  V  is open, there is some neighborhood  U  of point  P  such that  U⊂V. 
But this means, that  P  is not an adherent point of set  W.  We’ve got a contra-
diction. Thus  P∈W. Since  P  is an arbitrary adherent point W, this set is closed. 

Obviously, every point of the set  V itself is its adherent point. But, if V is 
not closed, then there are additionally points, which do not belong to  V, but are 
its adherent points. 

Definition 1.13. The set of all adherent points of set  V  is called the clo-
sure  of set  V.  

We use the following notation for closure: V ̄. 

Definition 1.14. The set of all inner points of set  V  is called its interior 

and is denoted by  V ° . The set  V ̄\V °   is called the boundary of set  V. 

Пример 1.6. Let  U(O,1) be open circular disk on the plane. Its closure is  
B(O,1)=U ̄ (O,1)={Q | ρ(O,Q)≤1} the closed circular disk, and its boundary is a 
circle S1={Q | ρ(O,Q)=1}. 
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Closure operation properties. 

1. VW ¯¯¯¯ =V ̄W ¯ ; 
2. VW ¯¯¯¯ ⊆V ̄W ¯ ; 
3. V⊂V ̄, V ̄̄= V ̄; 
4. ∅̄ = ∅. 

Example 1.7.   Let V=(–1, 0), W=(0,1).  Then V W = ∅  ⇒  VW ¯¯¯¯ =∅. 
On the other hand, V ̄=[–1, 0], W ¯ =[0,1], ⇒ V ̄W ¯ = {0}. This example shows, 
that equality in property  2  may not hold. 

Теорема 1.2.  I. The intersection of any finite or infinite number of closed 
sets is a closed set. 

II. The union of any finite number of closed sets is a closed set. 
III.  ∅ и M – are both closed. 
We accept these properties and the theorem without proof. 

§4. Continuous mappigs. Homeomorphism 
Remind definition of continuous function from Mathematical Analysis. 

Definition 1.15.  Function of one variable  f : R –→ R  is called continuous at 
point  xo, if  ∀ε>0  ∃δ>0  such that  |x – xo|<δ  ⇒  | f(x) – f(xo) |<ε . 

This definition can be reformulated in the language of open balls. 
Definition 1.16. Function of one variable  f : R –→ R  is called continuous at 

point  xo, если  ∀ε>0  ∃δ>0  such that  x∈U(xo,δ)   ⇒  f(x)∈U(f(xo),ε). 

This definition is suitable also for mapping of two metric spaces 
f :  (M, ρ) –→  (N, ρ1). We can also formulate it in the following form. 

Definition 1.17.  Let  (M, ρ)  and  (N, ρ1) –– be two metric spaces. Mapping  
f : M –→ N  is called continuous at point  P∈M, if ∀ε>0 ∃δ>0 such that  
f(B(P,δ))⊂ B(Q,ε), где  Q= f(P). 

The meaning of this defini-
tion is as follows: points close to  xo  
after action of mapping turn out to 
be close to  yo . In other words, no 
matter how small the open ball with 
center in  yo   is , there is a ball with 
center  xo,   which is mapped into 
the first ball  (figure 1.7). 
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In order to obtain a definition of continuous at a point mapping of two topologi-
cal spaces, it is sufficient to replace open balls with arbitrary neighborhoods. 

Definition 1.18.  Let  (X, τ)  and  (Y, τ1)  be two topological spaces. Map-
ping  f : X –→Y  is called continuous at point  P∈X, if for any neighborhood  V  of 
point  Q= f(P)∈Y  there is such neighborhood  U  of point  xo, that  f(U)⊂V. 

The condition used in the definition: «for any neighborhood  V  of point  
yo=  f(xo)∈Y  there is such neighborhood  U  of point  xo, that  f(U)⊂V» is called 
Cauchy condition. Mapping  f : X  –→ Y  called continuous, if it is continuous at 
every point  xo∈X. 

Theorem 1.3. Mapping  f : X –→Y  of two topological spaces is continuous 
if and only if preimage (inverse image) of every open set  V⊂Y  is open set  
U = f −1(V)   in X .  

Proof. Suppose that  f : X –→Y  is continuous and  V⊂Y  is open set. Let  
U = f −1(V),  P∈U  be an arbitrary point and Q =f (P). Then  Q∈V .  Since  V  is 
open, there is a neighborhood  W  of point  Q   such that   W⊂V. Since  f   is con-
tinuous, There is neighborhood  O  of point  P  in   X   such that   f (O)⊂W⊂V. This 
inclusion means that  O⊂U. Thus  P  is an inner point. Since   P∈U  is an arbitrary 
point,  U   is open. 

Conversely. Suppose that preimage of every open set in  Y  is open set in 
X ,  P∈X  is an arbitrary point and  Q =f (P). Let  V  be an arbitrary neighborhood 
of point  Q  and  U =f −1(V).  Then  U   is open and f (U)⊂V .  It means that our 
mapping is continuous at point  P. Since   P∈U  is an arbitrary point,  f   is continu-
ous.  

Definition 1.19.  Mapping  f : X –→Y  of two topological spaces is called  
open, if image of any open set  U  in  X  is open set  V= f (U )  in  Y . 

Definition  1.20. Отображение  f : X –→ Y  of two topological spaces is 
called  homeomorphism или topological mapping, if this mapping is  

1)  bijective (i.e. one-to-one mapping of set  X  on the entire set  Y ); 
2)  continuous; 
3)  open. 
This definition is equivalent to the fact that  f  is invertible and both map-

pings  f  and  f –1  are continuous. 

It turns out that the topological maping  f : X –→ Y  sets up a one-to-one 
correspondence between the open sets of space  (X, τ)  and open sets of space  
(Y, τ1). Therefore, from the point of view of the topology, spaces  (X, τ)  and  (Y, 
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fig.1.8 

τ1)  are arranged identically, if there is homeomorphism f : X –→Y.  In this case 
the spaces are called homeomorphic or topologically equivallent. 

Example 1.8.  Open interval  (–1, 1)  and 
the entire numerical line  R  are homeomorphic. 
Topological mapping is set up by function   

f : (–1, 1) –→ R,  f (x)= tg
 π 

2
 x  (figure 1.8). 

Example 1.9. The sphere  S2  and the plane   
R2   are not homeomorphic. However, if we delete 
one point out of the sphere, then the remaining set 
will be homeomorphic to the plane.  
Homeomorphism is set up by, so 
called, stereographic projection  
p: S2\{N}–→R2 (figure 1.9). 

When we are talking 
about surfaces, homeo-
morphism can be visualized 
as follows. We can wrinkle, 
compress and stretch the sur-
face as you like (like made of 
rubber), we can’t only cut and 
glue. Everything that results 
will be homeomorphic to 
the original surface. 

Example 1.10. A sphere and any 
convex polyhedron (tetrahedron, cube, 
...) are homeomorphic. In order to con-
struct a homeomorphism, we place the 
polyhedron inside the sphere so that the 
center of the sphere is inside the polyhe-
dron and project it from the center onto 
the surface of the sphere (figure 1.10). 

In order to prove that surfaces or 
curves are homeomorphic, it is sufficient 
to construct a homeomorphism. If we 
failed to construct it, this does not mean 
that the homeomorphism does not exist. 
Therefore, to prove that two topological  

O 

x 

p(x)  
 

fig.1.10 

N 

S 
x 

p(x)  

fig.1.9 
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spaces are not homeomorphic, we must find quantities that are preserved under 
homeomorphism. They are called topological invariants. Consider one example. 

Example 1.11. The topological invariant for 
curves is the presence and number of dividing 
points. For example, removing one point from a 
line, we divide it into two disconnected sets. If one 
point is removed from the circle, then it remains 
connected (figure 1.11). Therefore, the circle  S1  
and the line are not homeomorphic. 

Exercise 1.1.  Taking into account the previ-
ous example, find very simple topological invariant 
that proves that the sphere and the torus are not 
topologically equivalent. 

§5. The main task of the Topology 
A mapping is said to be continuous, if 

two points close to each other remain to be 
close after the action of the mapping. 

Example 1.  Consider the circle  F  and 
two points  A, B  at a short distance to each oth-
er. We chose a point  C  on the arc  AB  and tear 
the circle at the point  C. We obtain an arc  Φ 
(figure 1.12). New positions of the points  A, B  
we denote  A′, B′. Now  A′, B′  are far from each 
other. The mapping we constructed   F→Φ  is 
not continuous. 

Mapping  f  is called homeomorphism or the topology mapping, if it is bi-
jection and it is continuous in both sides. It means, that  f  and  f −1 are both con-
tinuous.  

The topology studies the properties of figures, which are preserved 
under the action of topology mappings. Two figures  F1  and  F2   are said to be 
homeomorphic or topologically equivalent, if there exists a homeomorphism 
f : F1→F2. 

One can imagine visually the topology mapping as follows: we can 
squeeze or stretch a set or crumple it, but we can’t tear or paste it.   

The idea of continuity is the main idea of proves. 

fig.1.11
 

 
 

A B 
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A B 

fig.1.12
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Theorem 1.  A square can be circumscribed about any closed curve. 

Proof.  Consider a pair of parallel 
straight lines  l  and  l′, such that the 
curve  γ  is located in the strip between 
them. Then we move this lines continu-
ously until they become tangent to  γ. 
The lines we get are called the lines of 
support for  γ.  

Let’s draw one more pair lines of 
support  m  and  m′, that are perpendicu-
lar to  l. We obtain the rectangle  
ABCD. Lets prove, that  ABCD  can be 
the square for some direction of line  l.  

Let  AD  be the side, that is parallel to  l  and   AB  be the side, that is per-
pendicular to  l. Denote the length of  AD  as  h1(l)  and  the length of  AB  as  
h2(l). The circumscribed rectangle is a square, if  h1(l)−h2(l) = 0. 

Lets construct a rectangle starting with the pair of lines  m  and  m′. It co-
incides with   ABCD. So  

h1(m)−h2(m) =− (h1(l)−h2(l)) . 

Lets turn the straight line  l  until it coincides with  m. The circumscribed rec-
tangle will be transformed continuously, so the value  h1(l)−h2(l)  will vary con-
tinuously to the opposite value. Therefore there exists a position of the line  l, 
when the value  h1(l)−h2(l)  is equal to zero. It means, that there exists a position 
of the line  l, when  ABCD  is a square. 

l′ 
l 

m 

m′ 

γ 

fig.1.13 
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CHAPTER 2. FOUNDATIONS OF THE GRAPH THEORY 
§1. The most simple topological invariants 

We noted in the example 4, that a sphere is not homeomorphic to torus. 
But how we can prove this statement? If we couldn’t manage to find homeo-
morphism, it doesn’t mean, that this homeomorphism doesn’t exist. In this situa-
tion we should find so called topological invariants. These are the numbers re-
lated to figures, that are equal for topologically equivalent figures. If these num-
bers are not equal, the figures are not topologically equivalent. 

Example 5.  A hyperbola consists from two pieces. We call them the con-
nected components. A parabola has one connected component. The number of 
connected components is a topological invariant. 

Example 6.  Consider a figure-of-
eight and the point  X  on it (figure 2.1). If 
we delete this point, the figure will be-
come disconnected. Such point is called a 
splitting point. The number of splitting 
points is a topological invariant. The circle 
has no splitting points. We can delete any 
point from a circle and the figure remains 
connected. So the circle is not topological-
ly equivalent to the figure-of-eight. 

Definition.  A figure, that consists from finite number points and finite 
number of arcs connecting this points is called a finite graph. The points are 
called vertexes and the arcs are called edges. A number of edges, that meet at the 
vertex  A  is called an index of this vertex.  

There can be the edges that have the beginning and the end at the same 
vertex. Such vertexes are called loops.  

Definition.  A connected graph is called a full graph, if it has no loops 
and any pare of vertexes is connected by the only one edge. 

Exercises  1.  Let  ak  be the number of vertexes with the index  k. Proof, 

that the total amount of edges in a connected graph is equal  12 (a1 + a2 + … + ak). 

2.  Proof,  that the total amount of edges in a finite graph, which have an 
odd index is even.  

X 

X 

fig.2.1 
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Definition.  A graph is said to be unicursal, if it can be drawn with a 
stroke of a pen, i.e. one can find a path through the entire graph that passes each 
edge only once.   

The property of a graph to be unicursal is obviously a topological invariant.  

Theorem 2.  A connected finite graph is unicursal if and only if it has no 
more than 2 vertexes of odd index. 

Proof.  Sufficiency.  1.  Suppose first, that there are no vertexes with odd 
index in a graph  G. Let  A  be an arbitrary vertex. We start our path at vertex  A. 
Suppose, that we have come to vertex  B  for the first time. It means, that we 
have used one edge ending in the vertex  B. The number of edges ending in  B  is 
even. So there is at least one more edge ending at  B  that we haven’t used. 
Therefore we can leave  B  by this edge. Suppose, that we have come to the ver-
tex  B  for the second time. It means, that we have used 3 edges ending at vertex  
B  and there is at least one more edge ending at  B  that we haven’t used. So we 
still have opportunity to leave  B. The case, that we have no opportunity to leave 
a vertex can happen only if we have returned to the point  A.  

Suppose, that we have returned to the point  A  and we haven’t used all the 
edges of our graph. Denote our path as  G1. It is a graph that has all the vertexes 
of even index. Therefore the graph  G\G1  has all the vertexes of even index too. 
Let  C  be the first point on  G1  that has non-used edges. We start a new path  G2  
at vertex  C  by graph  G\G1.  The opportunity that we can’t leave a vertex can 
happen only if we came back to  C. Now we construct a new path  G*  as fol-
lows. We start by the path  G1  and stand by  G1  until we come to the vertex  C. 
Then we continue our path by  G2  and we come back to  C. After that we go by 
the remained part of  G1  to point  A.  

Suppose, that  G*  still does not coincide with the whole  G. Let  D  be the 
first vertex on  G*  that has non-used edges. We add to  G*  a new part of the 
path from  D  to  D. And so on. Graph  G  is finite. So after the several proce-
dures of adding the new parts we will exhaust all the edges of  G  and we will 
get the path from  A  to  A  along all the edges of  G. 

2.  Suppose now, that there are 2 vertexes with odd index  A1  and  A2  in a 
graph  G. The graph  G  is connected. So there is a path  G1  from  A1  to  A2. 
This path contains odd number of edges which end at  A1  and odd number of 
edges which end at  A2. Therefore the graph  G\G1  has all the vertexes of even 
index and we can use the procedure of adding the new parts to G1, described 
above. After the several procedures we will exhaust all the edges of  G.  
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Exercise  3.  Proof a necessity 
in this theorem. 

The following problem is classi-
cal problem and it was formulated by  
Leonard Euler in 18th century. There 
were 7 bridges in Koeningsberg over 
the Pregl river (figure 2.2). The ques-
tion is: if it is possible to walk along all 
the bridges 

and only once along each of them? Denote 
the islands as  A  and  B, the banks as  C  and  
D. So we can illustrate this map by a graph, 
that has 4 vertexes and 7 edges (figure 2.3). 
We see, that there are all the vertexes of odd 
index. Therefore this graph is not unicursal. 

Exercises  4.  It is sufficient add a 
bridge anywhere in order to make this graph 
unicursal. Proof this statement. 

5.  Find the condition, for the full 
graph to be unicursal. 

§2. Eulerian characteristics of a graph 
Any graph can be constructed gradually by adding one edge after another. 

For example, we can give the numbers to every edge and draw the edges in this 
order. 

Example 7.  Consider the graph on the picture 8. If we draw the edges in 
the indicated order, the graph will be not connected first. If we draw the edges in 
the inverse order, the graph will be connected all the time.  

Theorem 3 (about drawing of a connected graph). Any connected graph 
can be drawn as follows. We take one edge, then add another edge so, that we 
get a connected graph; then we add one more edge so, that we get a connected 
graph again and so on. 

Exercises  5.  Prove, that any connected graph can be drawn with a 
stroke of a pen, if it is allowed to pass each edge for several times. 

6.  Prove the theorem 3. You can use the previous exercise. 

A 

B C 

D 

fig.2.2 
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7.  The sequence of edges is called to be simple, if its unit is homeo-
morphic to a closed interval. Prove that any 2 vertexes of the graph could be 
connected by simple sequence of edges. 

8.  Suppose, that any 2 vertexes of a graph can be connected by at least 2 
simple sequences  of  edges. Prove that such graph has no vertexes of index 1. Is 
the inverse statement true? 

Definition. A closed 
sequence of edges of graph  G  
is called to be a contour, if it 
is homeomorphic to a circle 
(figure 2.4). A connected 
graph  G  is called to be a 
tree, if it contains no contours 
(figure 2.5).  

Let’s prove now, that 
for any tree with  V  vertexes 
and  E  edges the following 
formula is true: 

V – E = 1 .                                                   (1) 

We use induction by the number of edges. 
Let  E = 1 . Then the tree has 1 edge and 2 vertexes and the formula is true. 

Suppose, that the formula is proved for the number of edges E = n  and the graph  
G  has  n+1 edges. Graph  G  is a connected graph. Therefore we can construct  
G  from some connected graph  G′  by adding of one edge  r. Graph  G′  is also a 
tree. According to our assumption the formula (1) is true for   G′. We note, that 
only one end of the edge  r  gives us a new vertex. So, adding of  r  brings us 1 
more vertex and 1 more edge and the formula remains true. The situation, when 
adding of r  brings us no new vertexes is impossible. We get a loop in this case 
(figure 2.6).  

The induction we carried out, proves that 
formula  (1)  is true for any tree.  

Definition. Let  G  be an arbitrary graph, V 
be the number of vertexes and  E  be the number 
of edges. The difference V – E   is called Eulerian 
characteristics of  G  and we denote it as  χ(G). 

 

 

fig.2.5 

fig.2.6 
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We proved, that Eulerian characteristics of a tree is equal to 1.  

  Exercises  9.  A graph, that contains no contours is called a wood. Let  
G  be a wood and  m  be a number of trees in  G (i.e. the number of connected 
components). Prove, that  χ(G) = m . 

10.  Prove, the following statement. If  G  is a tree, than two arbitrary ver-
texes in  G  can be connected by the unique simple sequence of edges. Is the in-
verse statement true? 

Let  G  be a connected graph, and it is not a tree. Then there is a loop in  
G. Let  r1  be an arbitrary edge of this contour. If we delete  r1  from  G, we ob-
tain a connected graph  G′, because the ends of  r1  are connected by the remain-
ing part of the contour. Graph  G′  has the same vertexes as  G. If  G′  is not a 
tree, it has a contour. We took an arbitrary edge  r2  from this contour and get a 
connected graph  G″. It has the same vertexes as  G. And so on. At the final step 
number  k  we delete the edge  rk  and obtain a connected tree  G*, that has the 
same vertexes as  G. We call  G*  the maximal tree in  G. The edges  r1, r2, …, rk  
are said to be cross-connection. For graph  G*  we have  V – E = 1 . The graph  G  
has  E + k  edges. So    

χ(G) =V – (E + r) = 1− k .  

So we have proved the following theorem. 

Theorem 4.  For any connected graph  G  the inequality 

χ(G)≤1                                                     (2) 

is true and the equality  χ(G) = 1  takes place only if  G  is a tree. 

According to  (2)  the number of cross-connections we can calculate by 
the formula 

k = 1−χ(G) .                                                     (3) 

Exercises  11.  If a connected graph can be obtained from a tree by add-
ing of several closed edges (one-edge loops), than it has an only one maximal 
tree. Is the inverse statement true? 

12.  Prove, that if a graph has  l  connected components, then  χ(G)≤ l . 
When the equality takes place? 

13.  Suppose that non-negative number and the direction are prescribed 
to every edge of a graph  G. Then we say, that a system of currents is given in  
G. Also the rule of Kirhgoff is supposed to take place: the sum of all the currents 
running in any vertex is equal to the sum of all the currents running out of it. 
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Prove, that if the graph  G  is a tree, then there could be only a trivial system of 
currents in  G (it means all the currents should be equal to zero). 

14.  Let  G  be a graph,  G*  be its maximal tree,  r1, r2, …, rk  be the 
cross-connections. Prove, that if we prescribe any currents to  r1, r2, …, rk,  we 
can extend them to  G*  the only one way.  

§3. Index of intersection 
Let us consider 2 examples of 

graphs, which cannot be embedded in the 
plane.  

Example 8. The graph “houses and 
wells”. Six point  H1, H2, H3 (the houses), 
W1, W2, W3  (the wells) are given on the 
plain. The task is to draw the paths from 
each house to each well, so that paths are 
not to intersect. Is it possible to do? The 
answer is negative. If we draw all the 
paths except the last one, there would be 
no place for this path (figure 2.7). We de-
note this graph as  HW. 

Example 9.  Consider the full graph 
with 5 vertexes, were each vertex is connect-
ed with 4 other ones. We denote it as  FG5 
(figure 2.8). 

It is interesting to note, that these two 
graphs are the standards of graphs, that 
couldn’t be embedded in the plane. It means 
the following. If the graph couldn’t be em-
bedded in the plane, then it contains one of 
the graphs  HW or  FG5. 

Exercises  15.  Prove, that the following graph couldn’t be embedded in 
the plane.  

16.  Vertexes of a graph are the vertexes of the regular polygon with  n 
angles and the edges are the sides and the shortest diagonals of the polygon. 
Prove, that for even  n  this graph could be embedded in the plane, and for odd  
n  couldn’t be embedded. 

fig.2.8 

H1 H2 H3 

W2 W1 W3 

fig.2.7 
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17.  Vertexes of a graph are the vertexes of the regular polygon with  2n 
angles and the edges are the sides and the longest diagonals of the polygon. 
 Prove, that for  n≥3  this graph couldn’t 
be embedded in the plane (figure 2.9). 

We are going to submit below the 
full prove, that the graphs  HW or  FG5   
couldn’t be embedded in the plane. 

Definition.  Let  a  and  b  are 
two segments on the plain and the end 
points of one segment do not belong to 
the other segment. We will write J(a, b) = 1 , if the segments intersect and   
J(a, b) = 0 , if the segments do not intersect. The value  J(a, b)  is called the inter-
section index for the segments  a  and  b. 

Definition.  A finite set of segments on the plain is called a  chain  or  a 
simple chain. The segments of the chain are called the links and the end points of 
the links are called the vertexes. If the number of links which meet at each vertex is 
even, we say that the chain is a cycle. For example, any closed broken line is a cy-
cle. 

Let  x,  y  be two chains and the vertexes of one chain do not belong to the 
other chain. Let chain  x  consist of segments  a1, a2, …, am  and the  y  consist of 
segments  b1, b2, …, bn. The sum 

∑
i =1

m
 ∑
j =1

n
 J(ai, bj) 

means the sum of all indexes of intersection of each link of  x  with each link of  y. 
If this sum is even, we write  J(x, y) = 0, and if this sum is odd, we write  J(x, y) = 1. 
The value  J(x, y)  is called the intersection index of two chains  x  and  y. We are 
going to prove, that index of intersection of two cycles is equal to zero. 

Exercise  18.  Prove, that any cycle is the union of several contours, 
which have no common links. 

According to this result, it is sufficient to prove, the following theorem. 

Theorem 4.   Intersection index of two contours  x  and  y  is equal to zero.  

Proof.  First we move these contours a bit in order to make each link of  x  
be nonparallel to each link of  y. This movement doesn’t change the intersection 
index. Then we choose an arbitrary straight line  l, which is not parallel to any 
straight line connecting a vertex of  x  with a vertex of  y. We begin to move the 
contour  x  continuously in the direction parallel to  l. In the process of move-
ment vertexes of  x  can’t meet the vertexes of  y. So the intersection index could 

fig.2.9 

Ре
по
зи
то
ри
й В
ГУ



21 
 

change only at the moment, when a vertex of one contour meet the link of the 
other contour. But as the result of this moment, the number of intersections can 
increase on 2, decrease on 2 (figure 2.10), or it can remain the same (figure 
2.11). So, the number of intersections preserves its parity. 

 

 

 

 

 
 

 

 

We can move the contour  x  in the position, where it has no intersections 
with  y. So  J(x, y) = 0  in this position and in any other position too.  

Now we can prove, that  HW-
graph couldn’t be embedded in the 
plain. Two paths, that leads from dif-
ferent houses to different wells we will 
call nonadjacent. Let’s draw all the 
paths (possibly with intersection) (figure 
2.12) and denote  I – the number of in-
tersections of all the pairs of nonadja-
cent paths. We are going to prove that 
for any way of drawing the paths this 
number is odd. 

Suppose, that we change the position of one path, for example  H1W1. Let  
x  be its old position, x′  be a new one. Nonadjacent to  x  are the following 
paths:  H2W2, H2W3, H3W2  and  H3W3. They form a cycle  y=H2W2H3W3H2. 
Two paths  x  and  x′  also form a cycle. The index of intersection of these two 
cycles is equal to zero. It means, that the number of intersections of  x  with  y 
and  of  x′   with  y  has the same parity:  J(x, y) = J(x′ , y) . Therefore it is obvious, 
that for any position of the paths on the plain the number  I  has the same parity. 
Really, we can change a position of the first path, then we change a position of 
the second path and so on. Finally we can obtain any prescribed position of the 
paths. We have the only one intersection on figure 2.7. So, for any position of 

fig.2.10 
fig.2.11 

H1 H2 H3 

W2 W1 W3 

fig.2.12 
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the paths on the plane the number  I  is odd and it is not equal to zero. Therefore 
the graph  HW  couldn’t be embedded in the plane 

Exercises  19.  Prove, that the graph  FG5  couldn’t be embedded in the 
plane. 

20.  Prove, that the index of intersection of any two cycles on the sphere is 
equal to zero. Show, that there are two cycles on the torus, which has the only 
one intersection. 

We considered above the segments without a direction. Let now  a  and  b 
be directed segments.  

Definition.  We move along the segment  a  and pay attention on the di-
rection of  b. If we note, that  b  intersects  a  from right to left we write   
J(a, b) = 1. If we note that  b  intersects  a  from left to right we write  J(a, b)=−1. 
If  a  and  b  have no intersection, we write  J(a, b) = 0. The number  J(a, b) we 
call an index of intersection of the directed segments  a  and  b. 

Definition.  A finite set of directed segments on the plain we call an inte-
ger chain  or simply  a chain. Let the chain  x  consist of segments  a1, a2, …, am  
and the  y  consist of segments  b1, b2, …, bn.  Index of intersection of two integer 
chains  x  and  y  is defined as the sum 

∑
i =1

m
∑
j =1

n
 J(ai, bj), 

We say, that an integer chain is a cycle if for any vertex of the chain the number 
of links coming into the vertex and to a number of links coming out the vertex 
are equal. 

Exercises  21.  Consider a closed broken line and let us choose a direc-
tion on of round trip along this line. We call this line a directed contour. Prove 
that any integer cycle is a union of finite number of directed contours, which has 
no common links.  

22.  Prove, that the index of inter-
section of integer cycles is equal to zero. 

23.  Consider a cycle, which consists 
of two directed contours  a1  and  a2  (figure 
2.13). Let the point  O  be in the internal part 
of the ring and  A  be an arbitrary point. Let  
y  be a directed broken line, that connects  O  
and  A. Prove, that  A  belongs to the external 
domain of the ring if and only if  J(x, y)=2. 
In what case  A  belongs to the shaded part of 
the ring? 

O 

A 

a1 
a2 

+1 
−1 

+1 

+1 

fig.2.13 
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§4. Theorem of Jordan 
We proved above, that index of intersection of two cycles on the plain is 

equal to zero. It seems, that there could be a more simple prove: in each point of 
intersection the closed broken line comes into the internal domain of the line or 
comes out of it. The number of coming-in points should be equal to the number 
of coming-out points. Therefore the number of intersection points is even.  

This prove could be admitted only if the sense of the notion “internal do-
main” is cleared up. But this notion is not such simple as it seems at first sight.  

 Definition.  A closed line homeomorphic to the circle is called a simple 
closed line. Let  l  be a simple closed line. If two points  A  and  B  could be 
connected by a broken line, which doesn’t intersect  l, we say, that  A  and  B  
are located in the same domain with respect to  l. If any broken line with the 
ends at  A  and  B  intersects  l, we say, that  A  and  B  are located in the differ-
ent domains with respect to   l. 

Theorem of Jordan.  Any sim-
ple closed line divides the plain on 
two domains. One of them is bounded 
and it is called the internal domain of 
the line and the other one is unbound-
ed and it is called the external do-
main. 

Jordan Theorem seems very 
simple only because we imagine to 
ourselves only very simple lines. If it is 
possible to define immediately, in what 
domain (internal or external) points  A, 
B, C  and  D  lies (figure 2.14)? 

We will prove Theorem of Jor-
dan only for the case, when  l  is a 
simple closed broken line. Let  a1, a2, 
…, an  be the consecutive links. Let  bi  

be the bisectrix of the angle between the 
links  ai  and  ai+1  and   bo  be the bisec-
trix of the angle between the links  an  

and  a1.  We take two points   P1  and  P2, 
which are symmetric to each other about 
the link  a1  and draw a segment   c1  
parallel to  a1  from  P1  till the intersec-

A 

B 

C 

D 

fig.2.14 

P1 

P2 

b1 

b0 

b2 

fig.2.15 
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tion point  A1  with  b1  (2.16). Then we 
draw a segment   c2  parallel to  a2  from  
A1  till the intersection point  A2   with  b2  
and so on. Finally we get a broken line  
c  and all the links of   c  are on the same 
distance from  l. Therefore the end point 
of  c  could be only  P1  or  P2.  

Suppose, that the end point is  P2. 
We add to  c  the link  P1P2  and we ob-
tain a contour, that has an only one in-
tersection point with the contour  l  (fig-
ure 2.16). We have got a contradiction. 
So, the end point of  c  could be only the point  P1.  

In the similar way we obtain a broken line  c′  with the beginning and end 
point   P2. Let  B  be an arbitrary point, that doesn’t belong to  l. We draw an arbi-
trary ray  r  from  B. This ray meets  c  or  c′  earlier, than it meets  l. Let  C  be the 
first point of intersection of  r  with   c  or  c′ . We move along  r  and then along  c  
or  c′   to the point  P1  or  P2  and we doesn’t meet  l. We prove, that an arbitrary 
point could be connected with  P1  or  P2  by a broken line, that doesn’t intersect  l 
(figure 2.16). 

Suppose, that  B  could be connected with such broken line with both  points  
P1  and  P2. We unite this lines and add the segment   P1P2. We obtain a contour, 
that has the only one point of intersection with  l. We have got a contradiction. So, 
we can divide all the points of the plain on two classes. Points of the first class 
could be connected with  P1,  points of the second class could be connected with  P2  
and this classes do not intersect. 

It easy to note, that all the points far from  l  belong to the same class. There-
fore the only one class is unbounded. The other class should be bounded.  

Exercises  24.  Let  l  be a closed broken line,  A  be an arbitrary point, that 
doesn’t belong to  l  and  AB  be a ray. Prove the following statement. If the ray  AB  
has an odd number of intersection points with  l, then  A  belongs to the internal 
domain of  l  and if  AB  an even number of intersection points with  l, then  A  be-
longs to the external domain of  l. 

25.  Prove, that any simple closed curve divides the sphere on two do-
mains.   

26.  Let  k  broken lines connecting two given points be drawn on the 
plain. Prove, that these lines divide the plain on  k  domains.   

P1 

P2 

fig.2.16 
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CHAPTER 3. TOPOLOGY OF SURFACES 
§1. Theorem of Euler 

The numbers of vertexes, edges and faces for several polyhedrons are giv-
en in the following array. 

The name of the polyhedron The number 
of vertexes 

The number 
of edges 

The number 
of faces 

Tetrahedron 4 6 4 
Cube 8 12 6 
n-angle pyramid 6 12 8 
n-angle prism 2n 3n n + 2 

 

We see, that for any polyhedron the following relation takes place: 

V−E+F=2 .                                                  (4)  

Here  V  is the number of vertexes, E – the number of edges and  F – the number 
of faces. It is easy to check this relation for arbitrary pyramid or prism. Euler 
was the first, who noted this remarkable property of polyhedrons and proved it.  

We make now the statement of the Eu-
ler theorem more precise. We note first of all, 
that any convex polyhedron is homeomorphic 
to the sphere and any face of a polyhedron is 
homeomorphic to the circle. We can construct 
a topology mapping of a polyhedron to the 
sphere as follows. We imbed the polyhedron 
into the sphere so that the center of the sphere 
is located inside the polyhedron (figure 3.1). 
Then we make a projection of the polyhedron 
to the sphere. Now the precise statement of 
the theorem looks as follows. 

Euler theorem.  For any polyhedron with surface homeomorphic to the 
sphere and each face homeomorphic to the circle relation (4) is true. 

We can make pure topological statement of this theorem. We note, that all 
the vertexes and all the edges of a polyhedron form a connected graph. This 
graph divides the surface of the polyhedron on the faces, which are homeo-
morphic to the circle. 

Euler theorem.  Let  Φ  be the sphere or any surface homeomorphic to 
the sphere. Let a connected graph which has  V  vertexes and  E  edges be 

p(A)  
 

O  
 

A  
 

fig.3.1 
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drawn on the surface, and this graph divides the surface  Φ  on  F  domains 
(faces) so that each face is homeomorphic to the circle. Then the relation (4) is 
true. 

The idea of the prove is contained in the exercise 27. 

Exercises  27.  Let  G  be a connected graph, drawn on the sphere,  G*  be 
its maximal tree and  k  be the number of  cross-pieces (i.e. the number of the 
edges that does not belong to  G*). Prove, that  G*  defines the only one domain 
on the sphere and so the equality  (4)  is true. If we add the cross-pieces to  G*  
one by one, we increase the number of domains on 1 on each step. Using this re-
sult prove the statement of Euler theorem.  

28.  Prove, that the equality  (4)  is true for the plain (we should add one 
unbounded domain to the number of domains). 

§2. Notion of a surface 
Definition.  A set  Φ⊂E3  is said to 

be elementary surface if it is homeo-
morphic to some domain  U  on the plain. 
Homeomophism  r:  U –→ Φ  is called 
paramerized surface  or  a parametrization 
of the elementary surface  Φ (figure 3.2).   

We can imagine it visually as 
followes. We put a plain domain in the 
space and deform it continuously without 
gluing (by means of homeomophism  r). 

We shell underline, that elementary 
surface has no boundary. 

We know many surfaces, 
which a not elementary ones. For 
example, the cylinder (figure 3.3), 
the sphere (figure 3.4) and the to-
rus are not elementary surfaces. 
Therefore we need the following 
definition. 

Definition. A set  Φ⊂E3  is 
said to be a simple surface, if any 
point  P∈Φ  has a neighborhood   
V⊂Φ , which is an elementary sur-
face.  

fig.3.3 
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Examples  1.  It is sufficient to de-
lete one point from the sphere, and the 
remaining part would be homeomorphic 
to the plain and therefore the sphere 
without one point is a simple surface.  

2. It is sufficient to delete one 
straight line from the cylinder, and the 
remaining part could be developed on the 
plain.  

3. It is sufficient to delete two circles from the torus, and the remaining part 
would be homeomorphic to the plain (fig. 3.5). 

All these examples show us, that sphere, the cylinder and the torus are 
simple surfaces. 

Definition.  Suppose, that a set  Φ⊂E3  has 
points of two classes. Points of the first class has a 
neighborhood, that is homeomorphic to a domain  U  
on the plain, points of the second class has a neighbor-
hood, that is homeomorphic to the open semicircle 
with a diameter. Then the points of the second class are 
said to be the boundary points, they form the boundary 
of the surface and the set  Φ is said to be a surface with  
boundary (figure 3.6). 

For example, the lateral aria of the finite cylinder is 
a surface with boundary. If we cut out a circular hole in 
the sphere, or, may be several holes, we get a surface with 
a boundary (figure 3.7). 

 

 

 

 

 

 

 
 
A surface can have so called singular points, which doesn’t relate to the 

classes, indicated above. A neighborhood of a singular point has more complex 

fig.3.6 

P 

fig.3.8 fig.3.9 fig.3.7 

fig.3.5 

Ре
по
зи
то
ри
й В
ГУ



28 
 

structure. For example, it can be homeomorphic to 3 open semicircles with the 
common diameter (figure 3.8). The vertex of the cone is homeomorphic to 2 
open circles with the common center (figure 3.9). 

An interesting example of 
a surface with boundary was 
described by German mathema-
ticians Mőbius and Listing. We 
can get it as follows. Let’s take 
a rectangular strip of paper 
(figure 3.10) and glue its ends 
so, that the indicated arrows co-
incide. This surface is called the 
Mőbius band. It has the only 
one side (figure 3.11). More ex-
actly it means the following.   

Consider the middle line of  
the Mőbius band. Let’s choose a normal unit vector in one point on the middle 
line. Then we move along this line and keep an eye on the normal vector. If this 
vector varies continuously, we will get an opposite vector, when we return to the 
same point.   

But we can talk about normal vectors only because the surfaces are located 
in the space. We will adduce now an “internal” definition of the one-side surface. 

Let  P  an arbitrary point on a surface  Φ. We choose a normal vector  n→  
at point  P  and a little circle around  P  on the surface. We choose a direction on 
the circle, which seems counter-clockwise from the end of the vector   n→. If the 
point moves by the surface with the normal vector, then the circle moves as well 
(figure 3.12). Suppose that the point goes around by the closed curve  γ  and re-
turned to its initial position. Then the circle can preserve its direction or it can 
change its direction. If for any closed  
curve on the surface the direction 
is always preserved, we say, that 
surface  Φ  has two sides or that 
the surface is orientable. Otherwise 
we say that it has one side or that 
the surface is nonorientable. For 
example, if we move a point with 
the circle by the middle line of the 

Mőbius band, we will get an opposite direction on the circle. 

fig.3.12 
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Examples  4.  If 
we fold a surface from 
the following rectangle 
(figure 3.13), we get the 
cylinder (figure 3.14). 

Consider now the  
rectangle from the figure 
3.15. The sides that are to 
be glued together are 
signed by the same letter.  
We chose the direction of the round trip 
counter clockwise and if the direction 
doesn’t coincide with the direction of the ar-
row, we sign this side as  a–1  for example. So 
we can sign the whole evolvent as  aba–1b–1.  
First we glue together sides  a  and we get the 
cylinder with the arrows on  its edges (figure 
3.16). Then we glue together sides  b  and b–1. 
As the result we get the torus (figure 3.17). 
   

 

 

 

 

 

 

5.  Consider now the following un-
fold surface (figure 3.18). We can sign 
this unfold surface as   aba–1b.  First we 
get the cylinder, but then we must glue 
together its sides in opposite directions 
(figure 3.19). It is impossible to make it 
in the 3-dimensional space. So, the fig-
ure we get can’t be embedded into the  

3-dimensional space without self-intersection. It is called ‘The bottle of Klein’ 
(figure 3.20). 
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6.  We can make the 
sphere from the following un-
folded surface (figure 3.21). It 
can be signed as  aa–1. Let us 
find out, what we can get from 
unfolded surface  aa (figure 
3.23). It would be better to con-
sider the evolvent as semisphere 
and the opposite points of each 
diameter are to be glued togeth-
er (figure 3.24).  

 

 

 

 

 

 

 

 

 

The surface we get is the projective plain. It is also impossible to imbed this sur-
face into the 3-dimensional space. 
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Exercise  29.  Prove that the 
boundary of the Mőbius band is a 
simple closed line.  

30.  Let us construct a sur-
face from the following evolvent 
(figure 3.25). We should paste 4 
pairs of segments, indicated by the 
same letter. Prove, that the surface 
has one side and its boundary is a 
simple closed line. 

Definition.  A surface is said to be closed if it is bounded and has no 
boundary. 

For example, the sphere and the torus are closed surfaces and elliptic pa-
raboloid is not a closed surface. If we take its bounded part it would have a 
boundary. 

§3. Gluing of surfaces. A problem of topological classification. 
Let  Φ1  and  Φ2  be two surfaces with boundary and suppose, that each of 

the surfaces has an edge homeomorphic to a circle (figure 3.26). We join (glue, 
paste) the edges and we get a new surface. One can say that a hole in the first 
surface is pasted by the second one or vice versa. If both surfaces  Φ1  and  Φ2  
are closed, the new surface is closed as well. 
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Example  5.  If we paste the sphere and the 
torus we get the surface ‘a sphere with a handle’, 
which is homeomorphic to the torus (figure 
3.27). The sphere with two handles is homeo-
morphic to the surface, which can be obtained 
by pasting of two torus.  

Exercise  31.  Consider the following un-
folded surface (figure 3.28). What surface we 
get, if we past the sides indicated by the same 
letter taking into account its direction? 

A problem of topological classification of surfaces means the following. 
We should submit a list of closed surfaces, which are not homeomorphic to each 
other, and any closed surface is homeomorphic to one of the surfaces from the 
list. 

Denote  Pk  the sphere with  k  hands. For example,  Po  is the sphere and  
P1  is the torus. 

Theorem.   
Po, P1, P2, …, Pk , …                                             (5)  

is a complete topological classification of  the closed orientable surfaces. 

We will submit the proof of the theorem later. 

§4. Eulerian characteristics of a surface. 
Let  Φ  be a surface with boundary or without boundary, which has 1 or 2 

sides. Suppose, that  Φ  admits decomposition on polygonal domains, it means 
that we can draw a graph  G  on the surface, which divides the surface on a finite 
number of domains each of them is homeomorphic to the circle. Denote  V – the 
number of vertexes of the graph, E – the number of edges and  F – the number 
of polygonal domains (faces). Number   

χ(Φ)=V−E+F                                               (6)  

is called Eulerian characteristics of the surface  Φ. Precisely speaking, this num-
ber is determined not by the surface itself, but by the graph  G. We proved for 
the sphere that this number doesn’t depend on the graph and it is equal to 2. We 
are going to show now that it is true for any surface. 

Let two graphs  G1  and  G2  be drawn on the surface  Φ. Each of them de-
termines a decomposition of the surface on polygonal domains. Let  Vi  be the 
number of vertexes of the graph  Gi,  Ei – the number of edges and  Fi – the 
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number of faces. The graphs  G1  and  G2  could have infinite number of inter-
section points. But we can move the graph  G1  a bit so that two graphs would 
have finite number of intersection points. If the graph  G1G2  is not connected, 
we can move  G1  and  G2  so, that they will have common points.  

We add all the common points to the set of the vertexes of graph  G1G2.  
Denote  V – the number of vertexes of the graph  G1G2,  E – the number of its 
edges and  F – the number of faces. We are going to prove two equalities 




 
V1−E1 +F1 =V−E+F
V2−E2 +F2 =V−E+F                                        (7) 

and they imply  V1−E1 +F1 = V2−E2 +F2 .  Both equalities  (7)  have the same 
proof. So we will prove only the first one. 

Let  M  be an arbitrary face determined by graph  G1  (figure 3.29). Denote  
V′, E′  the number of vertexes and the number of edges of the graph  G1G2  lo-
cated inside  M (not on the border) and let this graph decompose  M  on  F′   
faces. Denote  q  the number of vertexes and the 
number of edges at the same time located on the 
border of  M. Let  Mo  be the same polygon, but 
without any decomposition. Let us cut the poly-
gon  M  out of the surface  Φ  and paste it by the 
border with  Mo. We get the surface homeo-
morphic to the sphere (figure 3.30). Each of the 
polygons  M  and  Mo  is homeomorphic to the 
hemisphere. We have a connected graph drawn 
on the sphere, which has  V′+q  vertexes,  E′+q  
edges and   F′+1  faces, because we added to F′  
faces of  M  one more face  Mo.  

According to the Euler theorem we have 

(V′+q)− (E′+q) + (F′+1) = 2. 

Therefore 

V′ −E′+ F′= 1.                                (8) 

Let us return to the surface  Φ, where the 
graph   G1G2  is drawn. We delete from the 
graph its part located inside  M.  Instead of  
V′  vertexes, E′  edges and 
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 F′  faces we get  0  vertexes, 0  edges and  1  face (M  itself). I.e. the number   
V′ −E′+ F′   will be replaced by the number  0−0+1 = 1. According to  (8)  noth-
ing will change! 

We delete now all the parts of graph  G1G2  located inside all the faces of 
graph  G1. We get a new graph  G*  and the number  V*−E* + F*  remains the 
same, i.e.  V*−E* + F* = V−E+F .  

What is the difference between  G1  and  G*?  G*  has some additional 
vertexes on the edges of  G1.  If one adds a vertex on the edge of a graph, he 
adds 1 more edge at the same time. So this action does not change the number 
V−E+F . Therefore  V*−E* + F* = V1−E1 +F1   and  the first of the equalities  
(7)  is true. 

We proved, that  Eulerian characteristics does not depend on a decompo-
sition of the surface on polygonal domains and it is determined by the surface 
itself. Moreover, it is topological invariant.  

Really, let a finite graph  G  be drawn on the closed surface  Φ1  and let   
f :Φ1→Φ2  be a homeomorphism. Then  G′= f (G)  is the graph on the surface  
Φ2  which has the same number of edges and the same number of vertexes as  G. 
And  G′  decomposes  Φ2  on the same number of domains as  G  decomposes  
Φ1. Therefore  χ(Φ1)=χ(Φ2) . 

Now it is easy to prove, that the 
sphere is not homeomorphic to the torus. 
Consider the following graph on the torus 
(figure 3.31). It has 1 vertex, 1 edge and 
there is only one face. Therefore  
χ(T 2)=1−2+1=0.  And we know, that  
χ(S 2)=2 . 

Exercises  32.  Prove, that the sphere with  q  holes has Eulerian charac-
teristics  2−q . 

33.  Let  Φ1  and  Φ2  be two surfaces, that have boundary homeomorphic 
to the circle. Prove, that if we paste them by there’s boundaries, we will get the 
surface with the Eulerian characteristics  χ(Φ1)+χ(Φ2) . 

34.  Find the Eulerian characteristics of circle, and of a hand and of the 
Mőbius band.  

35.  Prove, that the Eulerian characteristics of the surface  Pk  is equal to  
2−2k. Therefore all the surfaces from the list  (5)  are not topologically equiva-
lent. 
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34.  A graph is drawn on a surface and it has  V  vertexes,  E  edges. Sup-
pose, that the graph decomposes the surface on  F  domains, but some of the 
domains are not homeomorphic to a circle.  Prove, that   V−E+F≥χ(Φ) . 

§5. Topological classification of nonorientable closed surfaces 
Consider the edge of the Mőbius 

band. As the matter of fact it is a circle 
twisted like the figure-of-eight (figure 
3.32). Let  Φ  be an arbitrary surface. 
We can make the round hole in  Φ  and 
glue the edge of the Mőbius band with 
the edge of the hole. So we can seal 
(stick) the hole by the Mőbius band. 

We can accomplish this process in a 
several steps. First we make some prepara-
tions with the evolvent of  the Mőbius band. 
Let  d  be the medium line. We cut the 
evolvent through this line (figure 3.33) and 
glue it again as it is demonstrated on the 
figure 3.34. The edge of the Mőbius band is 
not signed. 
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We get the band where upper side marked by letter  d  should be pasted 
with itself. 

We glue the edge of the Mőbius band of the to the edge  γ  of the round 
hole (figure 3.36). We see, that it is the same, as if we identify the opposite 
points of   γ. If our surface  Φ  is the sphere, we get the projective plane.  
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What will we get, if we seal two round holes on the sphere by the Mőbius 
band?  Let’s see on the evolvent. Edges of the round holes are signed as  γ1  and  
γ2 (figure 3.37). We can change the directions of two arrows signed by the same 
letter simultaneously. So we get the evolvent 3.38.  

Then we unite the edges  b, f  and  a  in the one edge  g, and in the same 
way we unite  a–1, f –1 and  b–1  in the one edge  g–1:  (bfa)–1= a–1f –1b–1. 

 

 

 

 

 

 

 

 
 
 

So we get the evolvent 3.39. It is the same situation, as if we identify the oppo-
site points on two bases of the cylinder (figure 3.40). Then we cut the evolvent 
3.39 through the medium line and paste the two parts (figures 3.41, 3.42). Later 
on we join  h–1g–1  in one edge  k  (figure 3.43). Finally we get the evolvent of 
the Klein bottle. 
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It means, that the sphere with two 
round holes sealed by the Mőbius bands 
is topologically equivalent to the Klein 
bottle. We accept without proof, that 
sealing of three round holes by the 
Mőbius bands gives the same surface as 
pasting one hand and sealing of one 
round hole by the Mőbius band. 

 

Theorem of Mőbius-Jordan.  Denote  Nq  the surface which is obtained 
from the sphere as a result of sealing  q  round holes by the Mőbius bands. Then 

N1, N2,…, Nq,…                                               (9)   

is the complete topological classification of closed nonorientable surfaces. It 
means, that an arbitrary closed nonorientable surface is homeomorphic to one 
of the surfaces   N1, N2,…, Nq,…. 

Exercise 37.  Prove, that the Eulerian characteristics of the surface  Nq  is 
equal to  2−q. 

The latter result means, that all the surfaces  (9)  are not topologically 
equivalent. 

§6. Vector fields on closed surfaces 
Let  Φ  be an arbitrary surface. Denote   TMΦ  the tangent plain to the sur-

face  Φ  at the point  M∈Φ.  Suppose, that each point   M∈Φ  is assigned a vec-
tor   v→M. Then we say, that a vector field  v→  is given on the surface  Φ. If for 
each point  M∈Φ  v→M  is a vector from tangent plane  TMΦ, then we say that the 
tangent vector field  v→  is given on the surface  Φ. We say that a vector field  v→  
is continuous, if  v→M  varies continuously from point to point. 

Example 6.  Let’s try to define continuous vector field on the sphere. The 
first attempt is to define it along the meridians, and the second attempt is to de-
fine it along the parallels (fig. 3.44).   
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Let’s have a look at the poles. We see, that these vector fields can be con-

tinuous at the poles  N   and  S  only if  |v→N | = |v→S | = o→ (figure 3.45). This points 
are called the singular points of vector field  v→. 

 
 
 
 
 
 
 

 

 
We are going to prove later, that there is no continuous field of directions 

on the sphere without singular points. This result can be formulated as follows. 

Hedgehog Theorem.  Suppose, that a continuous nonzero vector field is 
given on the sphere  S2. Then there is a point  xo∈S2, were  v→(xo)  is a normal 
vector (i.e. it is perpendicular to the tangent plane). 

Really, we can decompose this 
vector field as a sum of two vector 
fields:  v→ = n→ + t→,  where  n→   is the 
normal one, and  t→  is the tangent 
one (figure 3.46). The vector field  t→  
must have the singular point, where  
t→= o→ and at this point we have  v→ = n→ . fig.3.46 
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On the figure 68 one can see 
more complex singular point, then 
on the figure 3.47.  It is so called 
‘saddle point’. 

Let’s choose a little circle 
around a singular point and chose 
direction of the circuit around the 
point (for instance, counterclock-
wise).  We go along the circle and 
observe the direction of the vector 
field. If the vector field turns  n  
times in the same direction, we 
say, that the singular point has 
index  n. If the vector field turns  n  times in the opposite direction, we say, that 
the singular point has the index  –n. 

Let’s have a look, what we have for the singular points drawn in the fig-
ures 65 and 67. For the first two points we have the index +1, and for the third 
point we have the index –1 (fig. 3.48). 
 

 
 
 
 
 
 

 

We are going to prove the following theorem. 

Theorem of Poincare.  Suppose that a tangent vector field is defined on a 
closed surface  Φ, and this vector field is continuous everywhere except the fi-
nite number of singular points. Then the sum of indexes of all the singular points 
is equal to the χ(Φ). 

Example 7.  We know, that  χ(Pk) = 2 – k  for the orientable closed surface  
Pk.  So the only orientable closed surface, which can have a tangent vector field 
without singular points is  P1, i.e. the torus. And, of course it is impossible to de-
fine such vector field on the sphere. 

We can define the desirable vector field on the torus, for example, along 
the parallels or along the meridians. Any constant vector field on the evolvent of 
the torus generates the desirable vector field on the torus (figure 3.49). 
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