2. Orlov, D.S. Ecology and Biosphere Protection in Chemical Pollution: Textbook. allowance / D.S. Orlov, L.K. Sadovnikova, I.N. Lozanovskaya. – M.: High school. – 2002. – 334 p.

3. Heysin, E.M. Brief determinant of freshwater fauna, second edition / E.M. Heysin. – M.: State Educational and Pedagogical Publishing House of the Ministry of Education of the RSFSR. – 1962. - 148p.

CONTENT OF ASCORBIC ACID IN ALCOHOL EXTRACTS OF EARLY-FLOWERING PLANTS

E. Leonovich, O. Avlasevich

VSU named after P.M. Masherov, Vitebsk, Belarus

Early-spring plants have developed a complex of the adaptations promoting preservation and the maximum use of heat at his shortcoming and resistance to overheating as a result of strong sunlight, high temperature of a substratum and to an insufficient amount of precipitation. Biomorphological adaptations of early-spring early-flowering plants are a complex component of their adaptation to conditions of their existence [1]. One of factors promoting this adaptation is the high content of ascorbic acid in fabrics of early-flowering plants, so in leaves of a bear leek contain up to 0,73%, in bulbs – up to 0,10%, in flowers and leaves of a primrose – up to 500 mg of % Ascorbic acid inactivates free radicals, forming an inactive radical and is a cofactor of ascorbateperoxidase [2].

The work purpose – to reveal differences in the content of ascorbic acid in alcohol extracts of early-flowering plants

Material and methods. The research of concentration of ascorbic acidwas conducted in from vegetative and generative bodies of early-flowering plants. Determination of the quantitative content of ascorbic acidwas carried out by a spektrofotometrichesky method at a wavelength of 265 nanometers. The maintenance of ascorbic acidis expressed in mkg/g of crude weight [2].

Mathematical processing of the received results was carried out by methods of parametrical and nonparametric statistics with use of a package of the statistical Microsoft Excel 2003, STATISTICA 6.0 programs.

Results and their discussion. Follows from table 1 that the largest content of ascorbic acidwas observed in leaves of *Allium ursinum L*. and *Állium schoenoprásum*, at *Primula officinalis* – in flowers. The maintenance of this index is higher in plant material in comparison with extracts. In extracts of 70% of alcohol the maintenance of ascorbic acid is higher than 40% of alcohol in comparison with extracts.

	Organ of the plant	Objects of research		
Plant object		Botanical garden	70% alcohol	40% alcohol
		(Vitebsk)	extract	extract
Allium ursinum	Leaves	$23,12\pm0,15^{6}$	$21,08\pm0,14^{6}$	$19,10\pm0,13^{6}$
	Stalks	$17,36\pm0,11^{6}$	$16,45\pm0,15^{6}$	$12,38\pm0,12^{6}$
	Roots	$15,16\pm0,15^{1,2,6}$	$13,28\pm0,11^{1,2,6}$	$11,05\pm0,13^{1,2,6}$
Állium	Leaves	$10,92\pm0,11^{1,6}$	$9,36\pm0,10^{1,6}$	$7,33\pm0,06^{1,6}$
schoenoprásum	Stalks	$8,68\pm0,12^{4,6}$	$7,35\pm0,11^{4,6}$	$6,18\pm0,14^{4,6}$
	Roots	$7,34\pm0,14^{3,5,6}$	$7,02\pm0,10^{3,5,6}$	$5,22\pm0,11^{3,5,6}$
Prímula véris	Flowers	$98,25\pm0,49^{1-5}$	$82,33\pm0,26^{1-5}$	$66,68\pm0,57^{1-5}$
	Leaves	$77,03\pm0,67^{1,6}$	$75,11\pm0,42^{1,6}$	$61,24\pm0,25^{1,6}$
	Stalks	$27,12\pm0,26^{2,5,6}$	$24,16\pm0,32^{2,5,6}$	$17,98\pm0,16^{2,5,6}$

Table 1 – The maintenance of ascorbic acid of mg/g in vegetative and generative bodies of early-flowering plants ($M \pm m$)

The note $-{}^{1}P < 0.05$ in comparison with leaves of Allium ursinum; ${}^{2}P < 0.05$ in comparison with stalks of a Allium ursinum; ${}^{3}P < 0.05$ in comparison with roots of a Allium ursinum; ${}^{4}P < 0.05$ in comparison with leaves of an Allium schoenoprasum; ${}^{5}P < 0.05$ in comparison with stalks of an Allium schoenoprasum; ${}^{6}P < 0.05$ in comparison with flowers of a Primula véris.

Statistically significant results are received when comparing leaves of *Allium ursinum* with the roots *Allium ursinum* (in leaves the maintenance of ascorbic acid is 1.59 times more larger), with leaves *Állium schoenoprásum* and the roots Állium schoenoprásum (in leaves the maintenance of this index is 1,33 times more), with stalks of *Primula officinalis* and leaves of Primula officinalis (in leaves the maintenance of this index is more in 3,11); when comparing maintenance of ascorbic acid in the roots *Allium ursinum* with the roots *Állium schoenoprásum* (in the roots *Allium ursinum* the maintenance of this index is 1,89 times more); when comparing maintenance of ascorbic acid in stalks of *Primula officinalis* is 3,29 times more larger in comparison with *Állium schoenoprásum* and by 1,47 times in comparison with *Allium ursinum*.

Conclusion. Thus, the maintenance of ascorbic acid depends on type of body and on concentration of alcohol (70% and 40%) in extracts. In extracts of 70% of alcohol concentration of ascorbic acid is higher than 40% of alcohol in comparison with extracts. High content of ascorbic acidis noted in extracts (70%) of *Primula officinalis* flower.

Reference list:

1. Balaeva-Tikhomirova, O. M. The Enzymatic activity of the tissues of the early-flowering plants/ M.O. Balaeva-Tikhomirov, A.D. Kublickaj, E.A. Leonovich // Bulletin vit. state university, $2015. - N_{\odot} 4. - P. 30-37$.

2. Balaeva-Tikhomirova, O. M. Influence of salts of heavy metals and extract has an antioxidant effect on the indicators of protein metabolism of yeast cells/ O. M. Balaeva-Tikhomirov, A. S. Novikov, A. D. Kublickaj // Bulletin vit. state university, 2016. – $N \ge 3(92)$. – P. 16–25.

3. Pivovarov, V.F. Onion crops / VF Pivovarov, II Ershov, AF Agafonov. – M., 2001. – P. 500.