Заключение. Таким образом, перевод лунки серебристой с дуба на новые кормовые растения сопровождается уменьшением количества потребляемой пищи от 15% до 45% в зависимости от вида кормового растения и снижением уровня процессов утилизации и ассимиляции.

- Anthrewartha, H.G. The Distribution and Abundance of Animal / H.G. Anthrewartha, L.E Birch // Univ. of Chicago Press. Chicago, 1954. – 782 p.
- 2. Майр, Э. Популяции, виды и эволюция / Э. Майр. М.: Мир, 1974. 460 с.
- 3. Waldbauer, G.P. The consumption and utilization of food by insects / G.P. Waldbauer //Adv. Insect Physiol., 1968. V.5. P. 254–288
- 4. Тыщенко, В.П. Основы физиологии насекомых. В 2-х ч. / В.П. Тыщенко. Л.: Изд-во ЛГУ, 1976. Ч.1: Физиология метаболических систем. 363 с.

ПРОДУКТИВНОСТЬ ДУБОВОГО ШЕЛКОПРЯДА (Antheraea pernyi G.-М.) В ЗАВИСИМОСТИ ОТ ВИДА КОРМОВОГО РАСТЕНИЯ

С.И. Денисова, С.М. Седловская Витебск, ВГУ имени П.М. Машерова

Изучение пищевых форм у видов насекомых-фитофагов имеет большое значение. Теоретическое значение изучения пищевых форм определяется тем, что они являются начальным этапом внутривидовой дифференциации, который еще почти совершенно не изучен [1–5]. Практическое значение вытекает из возможности применения полученных кормовых линий дубового шелкопряда для гибридизации с целью получения эффекта гетерозиса.

Цель работы — изучить продуктивность дубового шелкопряда под влиянием вида кормового растения и кормовой гибридизации.

Материал и методы. Исследования по теме проводили на экспериментальной базе биологического факультета учреждения образования «Витебский государственный университет имени П.М. Машерова» с 2017 г. по 2019 г.. Материалом для работы служил китайский дубовый шелкопряд (*Antheraea pernyi* G.-M.). При получении других кормовых линий в качестве корма использовались срезанные ветви лещины (*Corylus avellana*), рябины (*Sorbus aucuparia*), малины (*Rubus idaeus*), вяза (*Ulmus laevis* Pall.). Контролем служила выкормка дубового шелкопряда на срезанных ветвях дуба черешчатого (*Quercus robur* L.).

Половой индекс расчитывался по формуле Бремера (из Драховской) [6]:

$$i = \frac{f}{f + m}$$

где i — половой индекс,

f, m — соответственно количество самок и самцов.

Результаты и их обсуждение. Нами решалась задача повышения жизнеспособности и продуктивности разводимой искусственной популяции дубового шелкопряда с помощью скрещивания пищевых форм для выяснения, с одной стороны, возможности получения эффекта гетерозиса, с другой стороны — для проверки возможности возникновения генетической обособленности за три года эксперимента. Результаты сравнительной характеристики продуктивности разных пищевых форм дубового шелкопряда приведены в таблице 1.

Таблица 1 – Продуктивность дубового шелкопряда в зависимости от вида кормового растения (средние данные за 2017–2019 гг.)

Кормовое	Масса кокона, г Шелконосность, %		Урожайность коконов,	Половой		
растение	2	8	4	70	кг с 1 кг грены	индекс
Малина	3,9±0,08	4,8±0,06	10,5	9,5	123,5	0,54
Рябина	3,5±0,07	4,1±0,1	9,2	8,1	93,4	0,55
Лещина	4,2±0,06	5,7±0,12	10,8	9,5	209,6	0,49
Вяз	3,5±0,07	3,8±0,1	8,5	7,7	63,2	0,55
Дуб (контроль)	5,5±0,01	7,2±0,25	11,4	10,5	356,1	0,45

Из приведенных в таблице 1 данных следует, что происходит падение шелконосности и урожайности дубового шелкопряда при переводе его гусениц на новые кормовые растения. В наибольшей степени это падение выражено у вязовой и рябиновой кормовых линий дубового шелкопряда. По сравнению с контролем снижение жизнеспособности у них достигает 27% и 20%. Отмечено изменение значений полового индекса в сторону увеличения числа самок у всех кормовых линий по сравнению с контролем. Установленный эффект указывает на изменение условий существования дубового шелкопряда в сторону ухудшения. Увеличение числа самок – это адаптивная реакция популяции на возросшую смертность зародышей в неблагоприятных условиях существования, которая стремится компенсировать падение численности популяций.

Таким образом, перевод дубового шелкопряда на другие кормовые растения сопровождается падением массы кокона, уменьшением его шелконосности и возрастанием числа самок среди особей полученных кормовых линий. Результаты скрещивания самцов и самок полученных пищевых форм с самцами и самками на дубе суммированы в таблице 2.

Кормовой гибрид	Жизнеспособность, %	Средняя масса кокона, г	Шелконосность коконов, %
♀ лещина х ♂ дуб	91,7	5,95±0,15	10,60±0,30
♀ рябина х ♂ дуб	86,0	6,41±0,14	10,20±0,28
♀ малина х ♂ дуб	84,3	6,18±0,17	10,30±0,20
♀ вяз х ♂ дуб	89,1	$6,74\pm0,12$	10,25±0,23
♀ дуб х ♂ малина	93,7	$6,59\pm0,19$	10,50±0,27
♀ дуб х ♂ рябина	90,2	$5,44\pm0,14$	9,00±0,25
♀ дуб х ♂ лещина	83,9	$6,43\pm0,11$	9,90±0,27
♀ дуб х ♂ вяз	88,8	$6,18\pm0,20$	9,95±0,30
♀ дуб х ♂ дуб (контроль)	84,7	5,82±0,16	9,70±0,32

Таблица 2 – Кормовая гибридизация дубового шелкопряда

Согласно данным этой таблицы происходит свободное скрещивание самцов и самок всех полученных кормовых линий с самцами и самками исходной родительской формы. Таким образом, перевод дубового шелкопряда на другие кормовые растения со специфическим биохимическим составом за исследуемый период не привел к возникновению генетической обособленности. Полученное потомство отличается повышенной жизнеспособностью, о чем свидетельствуют данные приведенной выше таблицы. Жизнеспособность гусениц у всех кормовых гибридов имеет значения, или сопоставимые с контролем, или превышающие контроль на 5—6%. Средняя масса коконов и их шелконосность у кормовых гибридов также не уступает контрольным показателям, а в ряде вариантов ($\mathcal P$ вяз х $\mathcal P$ дуб, $\mathcal P$ рябина х $\mathcal P$ дуб) даже достоверно повышает контрольные показатели.

Заключение. Гибридизация особей пищевых форм с их родительскими формами приводит к подъему жизнеспособности и продуктивности дубового шелкопряда и разведение этого насекомого-олигофага на других кормовых растениях имеет важное практическое значение.

- 1. Завадский, К.М. Учение о виде. Л.: Наука, 1961. 254 с.
- Кожанчиков, И.В. Новое в познании биологических форм и биологических видов насекомых / И.В. Кожанчиков // Зоол. ж., 1956. – № 35. – С. 133–141.
- Майр, Э. Популяции, виды и эволюция / Э. Майр. М.: Мир, 1974. 460 с.
- 4. Шмальгаузен, И.И. Пути и закономерности эволюционных процессов /И.И. Шмальгаузен. М.: Наука, 1983. 359 с.
- 5. Яблоков, А.В. Эволюционное учение / А.В. Яблоков, А.Г. Юсуфов. М.: Высшая школа, 1989. 335 с.
- 6. Драховская, М. Прогноз в защите растений. М.: Наука, 1962. 158 с.