

39

DEEP LEARNING FOR CHESS AI

A.S. Fedorenko

Omsk, F.M. Dostoevsky OmSU

Deep learning - a set of machine learning methods based on feature/representation

learning, rather than specialized algorithms for specific tasks. Many deep learning methods

were known back in the 1980s, but the results were unimpressive until advances in the theory

of artificial neural networks and the computing power of the mid-2000s made it possible to

create complex technological architectures of neural networks with sufficient performance

and to solve a wide range of problems. who didn’t give in to an effective solution earlier, for

example, in computer vision, machine translation, speech recognition, and the quality of the

solution in many cases is now comparable, but not Otori cases superior to 'live' experts [1].

Chess is a game with a finite number of states. This means that, with endless computing

resources, we could find a solution to this game as follows:

1. Assign all final positions values –1, 0, 1;

2. We apply the recursive rule f(p) = maxp→p' – f(p'), where p → p' denotes all valid

moves from position p.

As a result, the number of possible positions in chess is 1043. Calculations of this scale

cannot be performed. In this paper, we try to resort to the approximation f(p) [2].

Material and methods. The game used 400 chess games played from the FICS open

database. Learning the function f(p) is based on the following principles:

1. Players choose optimal or near optimal moves. That is, for two consecutive positions

p → q we have f(p) = – f(q).

2. If a player does not go from position p to position q, but to a random position r(p → r)
, then the inequality f(r) > f(q) must hold.

We will write a model - a neural network with a depth of 3 layers, a width of 2048 neu-

rons, with ReLU neurons in each layer. The input is a layer wide, which determines the pres-

ence or absence of each figure in each cell. After three matrix multiplications (each with sub-

sequent non-linearity), the final scalar product with a vector of dimension 2048 is calculated

to reduce the result to a single value. In total, the network has 10 million unknown parame-

ters.

To train the network, I used triplets (p,q,r). If we denote the sigmoid as

S(x) = 1 / (1 + exp(–x)), then the general objective function will have the following form:

∑(p, q, r) log S(f(q) – f(r)) + k log(f(p) + f(q)) + k log(–f(q) – f(p)).

These are the log-likelihood [3] of the inequalities f(r) > f(q), f(p) > – f(q), and f(p) < –

f(q).

I rented an AWS GPU and trained the model on 200 million lots in seven days using the

stochastic gradient descent [4] with Nesterov momentum. I put all the triplets (p,q,r) into an

HDF5 file. For some time I experimented with various values of the learning rate, but then I

realized that I just want to get a good result in a few days. As a result, I applied a slightly un-

usual learning speed scheme: 0.03 · exp (–time in days). Since the data is very large, regulari-

zation is not required. Therefore, I did not use either dropout or L2 regularization.

I applied a little trick: coding the board in the form of 64 bytes, and then converting to a

real vector of dimension 768 on the GPU. This provided a significant performance boost due

to a significantly smaller number of I / O operations.

The basis of any chess AI is some function f(p), used to obtain an approximate estimate

of the position. This function is called evaluation function.

The evaluation function is used in combination with an algorithm that performs a deep

search among millions of positions in the game tree. All chess programs use intelligent search

Ре
по
зи
то
ри
й В
ГУ

40

algorithms, but when moving through the game tree, the number of positions increases expo-

nentially, so it is impossible to search more than 5 to 10 positions ahead. In practice, some

approximation is applied to evaluate the leaves, and then some version of the negamax proce-

dure is used to evaluate the possible next moves.

An example of the simplest evaluation function is a function based on the value of the

pieces: each pawn – 1 point, each knight – 3 points, etc. We will use the function we have

trained to evaluate the leaves of the game tree.

To summarize: to solve the problem, it is necessary to train the function f(p), and then

integrate it into the search algorithm.

Findings and their discussion. As it turned out, the function that I trained can really

play chess. She beat me in all games. I organized a competition for my program and the Sun-

fish program, sponsored by Thomas Dybdahl Ahle. Did my program win? Sometimes.

I think the written algorithm could play much better with the following optimization:

1. More efficient search algorithm. For example, Sunfish used MTD-f, while I used ne-

gamax with alpha-beta pruning. I will not say that MTD-f is better, it is a fundamen-

tally different algorithm and one could test it.

2. More efficient evaluation function. If we use more “complex” examples for training,

for example, the results of the game of grandmasters, the result should be a more ef-

fective model of the evaluation function.

3. Speed up evaluation function. You could speed up the process if you train a smaller

version of the same neural network.

4. Speed up evaluation function. In this work, the GPU for the game was not used - it

was used only for training.
Conclusion. It is worth remembering that the written algorithm is still far from perfect and did

not compete with any advanced chess program. However, it has some positive aspects: There is the

opportunity to train the evaluation function directly on the "raw" data without pre-processing; relative-

ly slow evaluation function.

1. Ciresan, D., Meier, U., Schmidhuber, J. Multi-column deep neural networks for image classification – 2012 IEEE Conference on

Computer Vision and Pattern Recognition: journal, 2012. – Pp. 3642–3649.
2. Maschler, M., Solan, E., Shmuel, Z. Game Theory – Cambridge University Press, 2013. – Pp. 176–180.

3. Myung, I. J. Tutorial on Maximum Likelihood Estimation – Elsevier Journal of Mathematical Psychology, 2003. – Pp. 90–100.

4. Bottou, L., Bousquet, O. Optimization for Machine Learning – Cambridge MIT Press, 2012. – Pp. 351–368.

SCANNING CAPACITANCE MICROSCOPY OF TGS–TGS+Cr

FERROELECTRIC CRYSTALS

R.V. Gainutdinov
1
, N.V. Belugina

1
, A.K. Lashkova

1
, V.N. Shut

2
,

I.F. Kashevich
3
, S.E. Mozzharov

2
, A.L. Tolstikhina

1

1
Moscow, Shubnikov Institute of Crystallography of RAS

2
Vitebsk, ITA of NAS of Belarus

3
Vitebsk, VSU named after P.M. Masherov

The method of Scanning Capacitance Microscopy (SCM) has rarely been applied to ferroelec-

trics and the observed contrast of capacitive images in the limited number of publications on this issue

is interpreted in the literature in different ways. Although the nature of observed contrast was not

completely established by the authors, the observed result indicated the possibility of visualization of

ferroelectric domain structures by the SCM method [1].

The purpose of this work is to study of the capabilities SCM as a method of local nanodiagnos-

tics of heterogeneous ferroelectric surfaces. The question of the applicability of the SCM method for

the composite mapping of ferroelectric crystals with the growth periodic impurity structure is consi-

dered.

Ре
по
зи
то
ри
й В
ГУ

http://ieeexplore.ieee.org/document/6248110/

