Министерство образования Республики Беларусь Учреждение образования «Витебский государственный университет имени П.М. Машерова» Кафедра экологии и охраны природы

Г.Г. Сушко, И.А. Литвенкова

БИОМЕТРИЯ

Методические указания для проведения лабораторных работ

В 2 частях

ЧАСТЬ 2

Витебск ВГУ имени П.М. Машерова 2019 Печатается по решению научно-методического совета учреждения образования «Витебский государственный университет имени П.М. Машерова». Протокол № 6 от 26.06.2019.

Авторы: заведующий кафедрой экологии и охраны природы ВГУ имени П.М. Машерова, кандидат биологических наук, доцент Г.Г. Сушко; доцент кафедры экологии и охраны природы ВГУ имени П.М. Машерова, кандидат биологических наук И.А. Литвенкова

Рецензент:

заведующий кафедрой химии УО «ВГАВМ», кандидат биологических наук, доцент *В.П. Баран*

Сушко, Г.Г.

C91 Биометрия : методические указания для проведения лабораторных работ : в 2 ч. / Г.Г. Сушко, И.А. Литвенкова. – Витебск : ВГУ имени П.М. Машерова, 2019. – Ч. 2. – 47 с.

Методические указания подготовлены в соответствии с типовой и учебной программами по курсу «Биометрия». Приводятся методики регрессионного, корреляционного, дисперсионного и многофакторного анализа биологических данных.

Издание предназначено студентам, обучающимся по биологическим специальностям, а также лицам, занимающимся биологическими и экологическими исследованиями.

> УДК 57(076.5) ББК 28в631я73

© Сушко Г.Г., Литвенкова И.А., 2019 © ВГУ имени П.М. Машерова, 2019

СОДЕРЖАНИЕ

Введение	4
Модуль 2. Анализ данных	5
Лабораторная работа № 7. Основы дисперсионного анализа Лабораторная работа № 8. Основы корреляционного анализа Лабораторная работа № 9. Основы регрессионного анализа Лабораторная работа № 10. Элементы многомерной статистики (много- факторный анализ)	5 21 32 39
Итоговое занятие по модулю 2	44
Рекомендуемая литература	46

введение

Предлагаемое учебное издание включает практические рекомендации и задания по модулю 2 «Анализ данных» курса «Биометрия». Модуль состоит из методических рекомендаций по проведению лабораторных работ, которые содержат тему и цель занятия, перечень необходимого оборудования и программного обеспечения, список терминов и понятий, знание которых обязательно для выполнения лабораторного занятия, задания для выполнения лабораторных работ и контрольные вопросы. Студентам предложен пошаговый алгоритм с иллюстрациями действий в MS Excel, PAST, Statistica.

Для осуществления текущего контроля в конце каждого лабораторного задания приводится список контрольных вопросов. В конце модуля имеются вопросы и задания для итогового контроля по модулю.

Содержание данного издания предполагает освоение навыков и умений студентами в области основ регрессионного, корреляционного, дисперсионного и многофакторного анализа биологических данных.

При подготовке методических указаний применены собственный опыт авторов по статистической обработке данных, научная и методическая литература.

МОДУЛЬ 2. АНАЛИЗ ДАННЫХ

ЛАБОРАТОРНАЯ РАБОТА № 7 Основы дисперсионного анализа

Цель: получить практические навыки и закрепить на конкретных примерах знания о методиках проведения дисперсионного анализа.

Программное обеспечение: базы данных MS Excel, пакеты анализа Statistica, PAST.

Основные термины и понятия: зависимая и независимая переменные; однофакторный дисперсионный анализ (One-way ANOVA), двухфакторный дисперсионный анализ (Two-way ANOVA), понятие о многофакторном дисперсионном анализе; нулевая гипотеза при дисперсионном анализе; F-критерий Фишера, степени свободы (df); разведочный анализ: проверка на нормальность распределения (визуальный анализ гистограммы распределений и тесты Колмогорова-Смирнова, Шапиро-Уилка), проверка равенства групповых дисперсий (тесты Левене, Баррета, Кохрана); апостериорный (post-hoc) анализ: тесы Тьюки, Шеффе, Даннета; непараметрический дисперсионный анализ: тесты Крускала-Уолиса и Фридмана; поправка Бонферрони.

Задание 1. Выполнить параметрический однофакторный дисперсионный анализ в пакете Statistica. Выяснить наличие зависимости массы плодов при использовании трех различных удобрений.

- Non <th
- 1) Загрузить таблицу с данными из MS Excel (Рисунок 7.1).

Рисунок 7.1 – Загрузка базы данных из MS Excel в Statistica

2) Запустить модуль One-way ANOVA: закладка Анализ/Дисперсионный анализ, выбрать однофакторный ДА (Рисунок 7.2)

 № Общий ДА: Таблица данных1 Быстрый Вид анализа: № Однофакторный ДА № Факторный ДА № Факторный ДА № Факторные измерения Используйте Однофакторный ДА для анализа планов с одной категориальной независимой переменной (фактором). Задание анализа: Диалог Мастер анализа № Редактор кода Для любого вида анализа можно выбрать несколько зависимых переменных. 	Стмена Отмена Опции Опции Опции Опции Опции Взвешенные моменты Степ, свободы 0 B-1 N-1
--	---

Рисунок 7.2 – Запуск модуля One-way ANOVA

3) Выбрать зависимую (масса плодов) и независимую (удобрение) переменные (Рисунок 7.3).

_			
	🔛 Однофакторный ДА: Таблица	данных1	? X
	Быстрый Опции С Переменные Зависимые переменные Категориальный фактор: н Савы фактороб: н Межгрупповой эффект: н	er Production Productina Productina Productina Productina Productina Productina Producti	ОК Отмена Опции • Редактор <u>к</u> ода
Q	А: Выберите зависимые переменны 1 - удобрение - 2 - перз - 3 - перз - 4 - перз - 5 - перз - 6 - перь - 7 - перз - 9 - перз - 9 - перз - 9 - перз - 9 - перз - 10 - Перз Инфо Зависимые переменные: 2 Подходящие переменные 2	е и категориальный предиктор: 1 удобрение 2 насса плодов, г 3 - Пер3 4 - Пер4 5 - Пер5 6 - Пер5 6 - Пер5 9 - Пер5 9 - Пер5 10 - Пер10 Все Подробно Инфо Категориальный предиктор: 1	ОК Отнена [Наборы] Используйте опцию Подходящие переменные: для предаврительного отбора категориальных и непеременных переменных переменных переменных наториальных и непеременных наториальных и непеременных наториальных и наториа

Рисунок 7.3 – Выбор зависимой и независимой переменных

4) провести разведочный анализ данных, указывающий на то, что соблюдаются следующие обязательные условия, позволяющие применить параметрический дисперсионный анализ, такие как нормальность распределения признаков, однородность групповых дисперсий (т.е. между ними нет статистически значимой разницы). Следует учесть, что все сравниваемые выборки должны быть независимы. Если данные требования не соблюдаются, применяют непараметрический аналог One-way ANOVA, например тест Крускала-Уолиса.

Проверка нормальности распределения.

Откройте модуль описательные статистики, выберите закладку нормальность, отметьте необходимый критерий, например Шапиро-Уилка, и нажмите на Гистограммы (Рисунок 7.4).

Рисунок 7.4 – Выбор критерия Шапиро-Уилка

Рисунок 7.5 – Распределение данных показателя массы плодов

Как видно на графике (Рисунок 7.5) и по показателю критерия Шапиро-Уилка (р>0,05), первое условие соблюдается.

Проверка однородности групповых дисперсий.

Возвращаемся в модуль Дисперсионный анализ, выбираем закладку Больше, а затем один из критериев, например Левене (Рисунок 7.6).

🔛 Результаты анализа1: Таблица данных1		? X
Пользовательские Остатки 1 Итоги Средние Контрасты переменные: 2 Эффект: "удобрение" Проверка однородности дисперсий/ковар	Остатки 2 Матрицы Отчет Апостер. Предположения Профили чаций Ш М критерий Бокса	Меньше Закрыть Изменить Изменить Опции То Группам
Критерий <u>Л</u> евена	-	
Распред. переменных в группах	Распред. остатков в ячейках	
Гистограммы	[истограммы	
. Нормал <u>ь</u> н. Без тренда	. ²⁷ <u>Н</u> ормальн. Без тренда	
Диагр. рассеяния Шатр.	Ииагр. рассеяния	
Полунормальный график z-преобр.	внутригрупповых корр.	
График средник и станд. отклонен	ний Дисперсии	

Рисунок 7.6 – Выбор критерия Левене

Итоги проверки на гомогенность дисперсии появятся в виде таблицы (Рисунок 7.7):

	Критерий Эффект: " Степени с	Левена од удобрение вободы дл	цнороднос е" пя всех F:	ти диспер 2, 27	сий (Табли	іца данных1)
	MS	MS Ouw5ra	F	р		
масса плодов, г	2,052000	8,180148	0,250851	0,779932		

Рисунок 7.7 – Вывод данных итоговой проверки на гомогенность дисперсии по критерию Левене

Так как итоги проверки с помощью теста Левена статистически не значимы (p>0,05), второе условие также соблюдается.

Таким образом, анализируемые данные удовлетворяют условиям, необходимым для параметрического дисперсионного анализа.

5) Выполнить анализ, выбрав Итоги/размеры эффектов (Рисунок 7.8).

Рисунок 7.8 – Выбор опции Размеры эффектов

Исходя из таблицы результатов (Рисунок 7.9) анализа видно, что p<0,05. Следовательно, средняя масса плодов статистически значимо отличается в зависимости от использования удобрения.

	Одномерн Сигма-огр Декомпоз	ные критери раниченная иция гипоте	ии значимо параметрі азы	ости, разм изация	еров эффе	екта и мощност	идлямасса плодо	в, г (Таблица дан
	SS	Степени	MS	F	р	Частичная	Нецентрированн	Наблюдаемая
		свороды				эта-квадрат.	OCTL.	мощность.
Эффект								(альфа=0,05)
Св. член	113221,6	1	113221,6	4945,776	0,000000	0,994570	4945,776	1,000000
удобрение	877,3	2	438,6	19,160	0,000007	0,586657	38,321	0,999783
Ошибка	618,1	27	22,9			ľ		

Рисунок 7.9 – Вывод таблицы данных результатов анализа размеры эффектов

6) Провести апостериорные сравнения. Поскольку дисперсионный анализ показывает наличие или отсутствие различий между сравниваемыми переменными, с его помощью нельзя узнать какие именно группы признаков различаются. Для этого предусмотрены множественные попарные (апостериорные сравнения – post-hoc tests) сравнения средних величин. Для их выполнения откройте вкладку Апостер и выберите критерий Тьюки (Рисунок 7.10).

	Крит. Тьюки ДЗР; перем. масса плодов, г (Таблица данных1) Приближенные вероятности для апостер. критериев Ошибка: Межгр. MS = 22,893, cc = 27,000							
	удобрение	{1}	{2}	{3}				
N ячейки		54,200	62,900	67,200				
1	удобрение 1		0,001156	0,000130				
2	удобрение 2	0,001156		0,129280				
3	удобрение З	0,000130	0,129280					

Рисунок 7.10 – Апостериорное сравнение (попарное сравнение средних величин)

Из таблицы результатов апостериорных сравнений (Рисунок 7.10) видна статистически значимая разница между парами сравниваемых признаков.

7) Сравнить средние значения графически. Для того чтобы увидеть различия средних значений по каждой группе сравниваемых признаков, можно воспользоваться вкладкой Средние (Рисунок 7.11). Полученный график демонстрирует отличия средних показателей рассматриваемых нами групп признаков.

🕎 Результаты анал иза1: Таблица данных1	
Пользовательси е Остатки 1 Остатки 2 Матрицы Отчет Итоги Средние Контрасты Апостер. Предположения Профили Закрыть Показать средние зффекта: "Удобрение" Ш Наблюдаемые, невзвеш. П График Все марг. таблицы Наблюдаемые, взвеш. График Все марг. таблицы Наблюдаемые, взвеш. Все марг. таблицы Опции Средние ковариаты Опьзователя Скоррект. средние	
☑ Показать стандартные ошибки ☐ Показать средние +/- стандартные ошибки	

Рисунок 7.11 – Сравнение средних значений графически

Задание 2. Выполнить непараметрический однофакторный дисперсионный анализ в пакете Statistica. Выявить наличие зависимости числа отловленных экземпляров имаго стрекоз от типа биотопа.

Загрузить таблицу с данными из MS Excel (Рисунок 7.12).

9	<u>, 1</u> , 1	(थ →) ÷						
_	Главн	ая Вставка	Разметка стра	ницы Фор				
	<mark>С</mark> же сак	ырезать опировать	Calibri	• 11 • A	🕂 STATISTIC	А - [Данные	: Таблица ,	данных1*
Bc	тавить ↓ 🗳 ⊄	ормат по образцу	жкч	1 🗄 🔹 🖄 🔹	<u>Ф</u> айл	Пр <u>а</u> вка <u>В</u> и	ід В <u>с</u> тавка	Фор <u>м</u> а
	Буфер	обмена 😼	Ш	рифт	П 🛱 📮	12 🚑 🛛	ð 🐰 🗈	R 🝼
	L22	~ (9	fx		Arial		- 10	
	Α	В	С	D	Ana	Прифт	• 10	• D
1	N♀	биотоп	число экзе	мпляров	· 4	1	2	3
2	1	сосновый лес	211		-	биотоп	число эк	Пер3
3	2	сосновый лес	161		1	сосновыі	211	
4	3	сосновый лес	184		2	сосновыі	161	
5	4	сосновый лес	184		3	сосновыі	184	
6	5	сосновый лес	184		4	сосновыі	184	
7	6	сосновый лес	184		5	сосновыі	184	
8	7	сосновый лес	184		6	сосновыі	184	
9	8	сосновый лес	184		7	сосновыі	184	
10	9	сосновый лес	184		8	сосновыі	184	
11	10	берег озера	954		9	сосновыі	184	
12	11	берег озера	743		10	берег оз	954	
13	12	берег озера	791		11	берег оз	743	
14	13	берег озера	1098		12	оерег оз	/91	
15	14	берег озера	796		13	oeper os	1098	
16	15	берег озера	1083		14	Geper os	1092	
17	16	берег озера	629		15	Geper os	1083	
18	17	берег озера	588		10	Gener ca	5.00	
19	18	берег озера	928		17	fener ca	928	
20	19	луг	167		10	луг	167	
21	20	луг	172		20	nvr	107	
22	21	луг	165		20	AVE	165	
23	22	луг	212		22	луг	212	
24	23	луг	118		23	луг	118	
25	24	луг	171		24	луг	171	
26	25	луг	174		25	луг	174	-
27	26	луг	92		26	луг	92	
28	27	луг	168		27	луг	168	

Рисунок 7.12 – Загрузка данных из MS Excel в пакет анализа Statistica

1) Запустить модуль One-way ANOVA: закладка Анализ/Дисперсионный анализ, выбрать однофакторный ДА (Рисунок 7.13).

Быстрый		ОК
Вид анализа: Вид анализа:	Задание анализа: <u>Диалог</u> Мастер анализа Редактор кода Для любого вида анализа можно выбрать несколько зависимых переменных.	Отмена Опции С С Опции С Опции С

Рисунок 7.13 – Запуск модуля One-way ANOVA

2) Выбрать зависимую (число экземпляров) и независимую (биотоп) переменные (Рисунок 7.14).

		🗛 Выберите зависимые переменн	ые и категориальный предиктор:	? ×
Однофакторный ДА: Таблица данных1 Быстрый Опции Спеременные Переменные: Зависимые переменные: нет	 2 ≤ ОК Отмена Опши ▼ 	1 - Gworon 2 - Micro Skicerinispoe 3 - Rep3 4 - Rep4 5 - Rep5 6 - Rep5 7 - Rep5 9 - Rep8 9 - Rep9 10 - Rep10	1 -биотоп 2 -число экзенгляров 3 - Пер3 4 - Пер4 5 - Пер5 6 - Пер6 7 - Пер5 8 - Пер6 9 - Пер6 9 - Пер6	ОК Отмена [Наборы] Иопользуйте опцира Подходящие переменые" для предварительного отбора
Категориальный фактор: нет Коды факторов: нет Межгрупповой эффект: нет	Редактор кода	Все Подробно Инфо Зависичные переменные: 2 Подходящие переменные	Все Подробно Инфо Категориальный предиктор: 1	категориальных и непрерывных переменных. Нажимте F1 для получения оправки.

Рисунок 7.14 – Выбор зависимой и независимой переменных

3) провести разведочный анализ данных, указывающий на то, что соблюдаются следующие обязательные условия, позволяющие применить параметрический дисперсионный анализ, такие как нормальность распределения признаков, однородность групповых дисперсий (т.е. между ними нет статистически значимой разницы). Следует учесть, что все сравниваемые выборки должны быть независимы. Если данные требования не соблюдаются, применяют непараметрический аналог One-way ANOVA, например тест Крускала-Уолиса.

Проверка нормальности распределения.

Откройте модуль описательные статистики, выберите закладку нормальность, отметьте необходимый критерий, например Шапиро-Уилка, и нажмите на Гистограммы (Рисунок 7.15).

Рисунок 7.15 – Выбор критерия Шапиро-Уилка

Как видно на графике (Рисунок 7.16) и по показателю критерия Шапиро-Уилка (p<0,05), первое условие не соблюдается, так как данные не подчиняются закону нормального распределения.

Рисунок 7.16 – Гистограмма распределения исследуемого показателя

Проверка однородности групповых дисперсий.

Возвращаемся в модуль Дисперсионный анализ, выбираем закладку Больше, а затем один из критериев для определения гомогенности дисперсии, например Левене (Рисунок 7.17).

🌆 Результаты анализа1: Таблица данных
Пользовательские Остатки 1 Итоги Средние Контрасты
Переменные: 2
Проверка однородности дисперсий/ков-
Критерий Девена
Распред. переменных в группах
Базтренда Диагр. рассеяния 🔛 Матр.
Полунормальный график 2-преоб

Рисунок 7.17 – Выбор критерия Левене для проверки однородности групповых дисперсий

Итоги проверки на гомогенность дисперсии появятся в виде таблицы (Рисунок 7.18).

	Критерий Эффект: б Степени с	Левена од іиотоп :вободы д.	цнороднос ля всех F:	ти дисперс 2, 24
	MS	MS	F	р
	Эффект	Ошибка		
число экземпляров	56368,42	2797,597	20,14887	0,000007

Рисунок 7.18 – Таблица итогов проверки на гомогенность

Так как итоги проверки с помощью теста Левена статистически значимы (p<0,05) и групповые дисперсии не являются однородными (гомогенными), второе условие также не соблюдается.

Таким образом, анализируемые данные удовлетворяют условиям, необходимым для непараметрического дисперсионного анализа.

4) выполнить анализ, в модуле Непараметрическая статистика / сравнение нескольких независимых групп, при этом снова выбрав зависимую и независимую переменные и вкладку ДА Крускала-Уолиса и медианный тест или нажав на ОК (Рисунок 7.19).

🛃 ДА Краскела-Уоллиса и медианный тест: Таблица д	анн ? Х
Быстрый	
П еременные	Отмена
Зависимые: число экземпляров Группирующая: бистор	🔈 Опции 🔻
нет	SELECT Y B
ДА Краскела-Уоллиса и медианный тест	По Группам
<u>Сравнения средних рангов для всех групп</u>	р-уровень для
Диаграмма размаха	,05

Рисунок 7.19 - Анализ в модуле Непараметрическая статистика

В первом случае вместе с результатом непараметрического дисперсионного анализа Крускала-Уолиса программа выдает и результаты медианного теста, который проверяет ту же нулевую гипотезу, однако является менее мощным (Рисунок 7.20).

	Медианный тест	, общ. медиан	a = 184,00	0; число э	кземпляр	ов (Таблиц	а данных1)
	Груп. (независ.)	переменная: о	иотоп				
Зависимые:	Хи-квадрат = 19,	63636 cc = 2 p	= ,0001				
число экземпляров	сосновый лес	берег озера	луг	Всего			
<= Медианы: наблюд.	8,00000	0,00000	8,00000	16,00000			
ожидаемые	5,33333	5,33333	5,33333				
набложид.	2,66667	-5,33333	2,66667				
> Медианы: наблюд	1,00000	9,00000	1,00000	11,00000			
ожидаемые	3,66667	3,66667	3,66667				
набложид.	-2,66667	5,33333	-2,66667				
Сумма: наблюд.	9,00000	9,00000	9,00000	27,00000			

Рисунок 7.20 – Таблица с результатом медианного теста

Во втором случае мы видим только результаты Н-теста Крускала-Уолиса (Рисунок 7.21).

	р знач. (2-сторон Груп. (независ.) Кр.Краскела-Уол	ние) для множ переменная: б ллиса: Н (2, N=	кест. сравн иотоп = 27) =19,9	нений;число экземпляров (Таблица данных1) 19255 р =,0000
Зависим.:	сосновый лес	берег озера	луг	
число экземпляров	R:12,333	R:23,000	R:6,6667	
сосновый лес		0,013083	0,389712	
берег озера	0,013083		0,000038	
луг	0,389712	0,000038		

Рисунок 7.21 – Таблица с результатом Н-теста Крускала-Уолиса

Как видно из таблиц, p<0,05. Следовательно, средние показатели числа экземпляров исследуемых организмов статистически значимо отличаются в зависимости от местообитаний. Из таблицы результатов также видна статистически значимая разница между парами сравниваемых признаков (выделены красным).

Различия между анализируемыми переменными можно увидеть и построив диаграмму размаха (Рисунок 7.22). Для этого нужно выбрать вкладку Диаграмма размаха в нижнем правом углу.

Рисунок 7.22 – Построение диаграммы размаха анализируемых признаков

Задание 3. Выполнить параметрический однофакторный дисперсионный анализ в пакете PAST. Выяснить наличие зависимости массы плодов при использовании трех различных удобрений.

-	Главн	ая Вста	вка Ра	зметк	а страни	ицы Ф
Bct	авить	ырезать опировать		alibri KK	Ч -	• 11 •
	- γγΦ Буфер (ормат по об обмена	разцу с		Шр	ифт
	114	•	()	f_{x}		
	А	В	С		D	Е
1	N♀	удобрени	удобрен	и удо	брени	e 3
2	1	50	5	1	64	
3	2	48	6	2	62	
4	3	51	6	2	62	
5	4	55	6	3	65	
6	5	56	5	9	68	
7	6	56	6	0	67	
8	7	57	6	4	69	
9	8	59	6	6	68	
10	9	60	7	1	73	
11	10	50	7	1	74	

1) Загрузить таблицу с данными из MS Excel (Рисунок 7.23).

🧶 PAST				/				- 14	-		x
File Edit	Transform	Plot Sta	tistics Mult	ivar de	el Diversity	Time G	eomet Stra	t Cladistics	Script		
۵	A	📴 🖪	Edit mode	₩ Edit	labels	Square r	node				
	удобрение_	удобрение_	удобрение_:	D	E	F	G	Н	1	J	K 🔺
1	50	51	64								
2	48	62	62								
3	51	62	62								
4	55	63	65								
5	56	59	68								
6	56	60	67								
7	57	64	69								
8	59	66	68								
9	60	71	73								
10	50	71	74								
11											

Рисунок 7.23 – Загрузка данных из MS Excel в PAST

При этом обратите внимание, что в отличие от программы Statistica, данные в PAST заносятся в таблицу по столбцам, соответственно каждой анализируемой переменной. Для вставки нужно выбрать вкладку Edit/Paste. Предварительно необходимо поставить метку Edit labels и установить курсор в верхнюю левую ячейку, помеченную синим цветом.

2) Проверить данные на соответствие закону нормального распределения. Предварительно необходимо снять метку Edit labels и выделить данные (Рисунок 7.24).

🧑 PAST					/	
File Edit	Transform	Plot Sta	tistics Mult	tivar N de	Diversity	Time
🕰 🗠	A	📑 🔁 I	Edit mode	🗖 Edit	labels	∏ Squ
	удобрение_	удобрение_	удобрение_	D	E	F
1	50	51	64			
2	48	62	62			
3	51	62	62			
4	55	63	65			
5	56	59	68			
6	56	60	67			
7	57	64	69			
8	59	66	68			
9	60	71	73			
10	50	71	74			
11						

Рисунок 7.24 – Снятие метки Edit labels и выделение данных Выберите закладку Statistics, а затем Normality test (Рисунок 7.25).

	PAST			-
PAST	Tests for norma	al distribution	-	
File Edit Transform Plot Statistics Multivar Model Diversity Time Geomet Strat Cladistics Script		удобрение_1	удобрение_2	удобрение_3
ypooperume ypoope ypooperume ypoope Correlation table	Ν	10	10	10
2 45 62 Ver-cover 3 51 62 Eand Tests (two samples)	Shapiro-Wilk W	0,9254	0,9349	0,9349
4 55 63 5 56 59 F and T from parameters	p(normal)	0,4044	0,4976	0,4979
8 56 60 T test (one sample) 7 57 64 Paired tests (t, sign, Wilcoxon)	Jarque-Bera JB	0,8082	0,2595	0,5335
8 59 66 Normality tests 9 60 71 Chi/2	p(normal)	0,6676	0,8783	0,7659
11 Coefficient of variation (two samples)	p(Monte Carlo)	0,4054	0,8774	0,6427
Mann-Wnitney (two samples) 14 Kolmogorov-Smirnov (two samples)	Chi [^] 2	3,6	2	0,4
15 Rank/ordinal correlation 16 Contingency table	p(normal)	0,05778	0,1573	0,52709
17 One-way ANOVA 18 Ten-way ANOVA	Chi^2 OK (N>20)	NO	NO	NO
20 Two-way ANOVA without replication	Anderson-Darling A	0,3737	0,3269	0,2674
22 23 Friedman	p(normal)	0,3432	0,4514	0,6017
24 One-way ANCOVA 25 Genetic capanos etito 28 Survival analysis 27 Roki cadar		×	P	
29 Combine errors				

Рисунок 7.25 – Выбор модуля Normality test в закладке Statistics

Как видно из таблицы, по показателю критерия Шапиро-Уилка (p>0,05), данные подчиняются закону нормального распределения.

3) Выполнить однофакторный дисперсионный анализ. Запустить модуль One-way ANOVA: закладка Statistics/ One-way ANOVA (Рисунок 7.26).

Рисунок 7.26 – Запуск модуля One-way ANOVA для выполнения однофакторного дисперсионного анализа

Перед анализом полученных результатов нужно убедиться в однородности групповых дисперсий. На это указывает тест Левена, значение показателя которого статистически не значимо (p>0,05). Следовательно, требование однородности групповых дисперсий выполняется.

Результаты дисперсионного анализа показаны сверху. Поскольку p<0,05, между анализируемыми данными есть статистически значимые различия. Ниже в таблице приведены результаты попарных апостериорных сравнений (тест Тьюки). Статистически значимые различия выделены красным.

Задание 4. Выполнить непараметрический однофакторный дисперсионный анализ в пакете PAST. Выявить наличие зависимости числа отловленных экземпляров имаго стрекоз от типа биотопа.

1) Загрузить таблицу с данными из MS Excel (Рисунок 7.27).

	÷	S PAST		_	•••			-					X
Главная	Вставка Разметка страницы	🗢 🛛 File Edit	Transform PI	ot Statistic	s Multivar	Model	Diversity T	ime Geom	et Strat	Cladistics	Script		
Вставить	ть саlibri 1 ж К Ц -		i 占 🤐 👫	🔁 🔽 E	dit mode	🔲 Edit lab	els 🗖	Square mode					
Буфер обмен	а 🕒 Шрифт		сосновый лес	луг	берег озера	D	E	F	G	н	1	J	
A12	→ 🗇 🕺	1	211	167	054	_	-		_		-		_
A	в с р	E	211	107	334								
1 № coch	овый луг берег озера	2	161	172	743								
2 1	211 167 954	3	184	165	791								
3 2	161 172 743	4	184	212	1098								
4 3	184 165 791				1000						-		
5 4	184 212 1098	5	184	118	796								
6 5	184 118 796	6	184	171	1083								
7 6	184 171 1083	7	184	174	629								
8 7	184 174 629		104		520		-	-			_		
9 8	184 92 588	<u> </u>	164	92	500								
10 9	184 168 928	9	184	168	928								

Рисунок 7.27 – Загрузка данных из MS Excel в PAST

Проверить данные на соответствие закону нормального распределения (Рисунок 7.28).

8 Tests for norma	al distribution			
	сосновый_лес	луг	берег_озера	
N	9	9	9	
Shapiro-Wilk W	0,6896	0,8464	0,9419	
p(normal)	0,001073	0,06802	0,6023	
Jarque-Bera JB	1,144	0,8403	0,5678	
p(normal)	0,5644	0,657	0,7528	
p(Monte Carlo)	0,1684	0,3489	0,5981	
Chi^2	13,667	9,2222	0,33333	
p(normal)	0,0002183	0,002391	0,5637	
Chi^2 OK (N>20)	NO	NO	NO	
Anderson-Darling A	1,641	0,832	0,2348	
p(normal)	0.0001172	0.01891	0.7084	

Рисунок 7.28 – Проверка данных на нормальность распределения

2) Проверить данные на гомогенность дисперсии по критерию Левена. Запустить модуль One-way ANOVA: закладка Statistics/ One-way ANOVA (Рисунок 7.29).

Рисунок 7.29 – Проверка данных на гомогенность дисперсии по критерию Левена

Результаты тестов показали, что ряд переменных не подчиняются закону нормального распределения, как по критерию Шапиро-Уилка, так по результатам других тестов (p<0,05), а критерий Левена выявил гетерогенность дисперсии (p<0,05), т.е. групповые дисперсии не однородны. Следовательно, параметрический дисперсионный анализ проводить не корректно.

Выполнить непараметрический однофакторный дисперсионный анализ Крускала-Уолиса (Рисунок 7.30).

Вставка Разметка страницы Ссылки Рецсилирование Вид Надотройки ²⁷⁰ Титеs New Roman + [14 + (A [*] A [*] (P [*])] [Ξ + 1] = + 1 [*] / ₁ +	Kruskal-Wallis test
PAST PAST PAST PAST PAST PAST PAST PAST	H (chi^2): 19,65 Hc (tie corrected): 19,99 p(same): 4,557E-05 Mann-Whitney pairwise comparisons, Bonferroni corrected \ uncorrected:
Conficient of variation (two samples) Conficient of variation (two samples) Kolmogores-Smirnov (two samples) Configures-Smirnov (two samples) Configures-Configures-Smirnov (two samples) Configures-	сосновый_глуг берег_озере сосновый_г 0,02295 0,0002739 луг 0,06885 0,0004123 берег_озере 0,0008217 0,001237

Рисунок 7.30 – Непараметрический однофакторный дисперсионный анализ Крускала-Уолиса

Результаты анализа демонстрируют достоверные различия (p<0,05) между переменными. Ниже в таблице приведены результаты по парных апостериорных сравнений. Статистически значимые различия выделены красным.

Задание 5. Выполнить самостоятельно дисперсионный анализ, используя приведенные выше схемы, в пакетах Statistica и PAST для данных, предложенных преподавателем.

Контрольные вопросы:

1. Понятие зависимой и независимой переменной.

2. Понятие дисперсионного анализа.

3. Условия применения дисперсионного анализа. Разведочный анализ данных.

4. Параметрический и непараметрический дисперсионный анализ.

5. Апостериорные тесты и их значение.

6. Объяснить результаты дисперсионного анализа на предложенном примере.

ЛАБОРАТОРНАЯ РАБОТА № 8 Основы корреляционного анализа

Цель: получить практические навыки и закрепить на конкретных примерах знания о методиках проведения корреляционного анализа.

Программное обеспечение: базы данных MS Excel, пакеты анализа Statistica, PAST.

Основные термины и понятия: понятие о функциональной и корреляционной зависимости, степень и направление корреляционной зависимости, положительная и отрицательная корреляция, линейная и нелинейная корреляция, коэффициент корреляции Пирсона, коэффициент ранговой корреляции Спирмена, оценка статистической значимости коэффициентов корреляции.

Задание 1. Выполнить корреляционный анализ в пакете Statistica, используя коэффициент корреляции Пирсона. Провести анализ связи между ростом и весом студентов биологического факультета. Данные получены рандомно, в результате опроса 20 девушек и 20 юношей, студентов 3–4 курса.

Нужно помнить, что для использования коэффициента корреляции Пирсона, отражающего степень связи между двумя переменными, необходимо выполнение обязательных условий, таких как нормальность распределения и наличие линейной связи между признаками. В противном случае используются коэффициенты ранговой корреляций, например коэффициент Спирмена.

1) Загрузить таблицу с данными из MS Excel (Рисунок 8.1).

Рисунок 8.1 – Загрузка данных из MS Excel в Statistica

2) Проверьте данные на соответствие закону нормального распределения сначала для переменной рост, затем для переменной вес, используя модуль Анализ/основные статистики и таблицы/нормальность (Рисунок 8.2).

Рисунок 8.2 – Гистограммы распределения переменных роста и веса

Как видно из рисунков, графический метод не дает достаточно точную оценку, однако показатель критерия Шапиро-Уилка (p>0,05) указывает на распределении близкое к нормальному. При необходимости можно применить подгонку данных, использовав преобразования Бокса-Кокса или прологарифмировав данные.

3) Проверить наличие линейной связи между признаками. Для этого запустите модуль Анализ/основные статистики и таблицы/парные и частные корреляции. Выберите прямоугольные матрицы и соответствующие переменные (Рисунок 8.3).

🕼 Парные и частные корреляции: Таблица данных1	<u> 2</u> 2	🔀 Выберите один или два списка переменных
Квадратная матрица Первый список: нет Второй список: нет Быстрый Дополнительно Опции Карты цветов Ш Матрица парных корреляций Графики Ш Матрица 1 Ш Частные корреляции Ш Матрица 2 Частные корреляции Ш Матрица 2 Частные корреляции Ш Матрица вычисляются для переченнох fro списа яри фиссировании переменнох fro списа яри бители fro	Стичена Отмена Отруппам Отвена О	1Рост 2-Вес 3Пол -Пер4 5Пер5 -Пер4 5Пер5 -Пер4 5Пер5 -Пер6 7Пер7 8Пер8 9Пер9 10Пер9 10Пер10 9Пер9 10Пер10 9Пер9 10Пер10 9Пер9 10Пер10 9Пер9 10Пер10 9Пер9 10Пер10 9Пер9 11 Подробно Инфо Все Подробно Инфо Все Подробно 1 1

Рисунок 8.3 – Запуск модуля Анализ и выбор соответствующих переменных

Затем выберите вкладку дополнительно/графики и нажимайте на ОК (Рисунок 8.4).

🖾 Парны	е и частные корреляции: Таблица данных1	S X	
- 	Квадра <u>т</u> ная матрица 🛛 🕵 Прямоугол <u>ь</u> ная матрица	ок	
Первый с	список: Вес	Отмена	
Второй сі Быстрый	писок: Рост й Лополнительно Опции Карты цветов	🔁 Опции 🔻	
Ma	атрица парных корреляций) Графики 🛄 Матрица <u>1</u>	(Можно сохранять	
	<u>Ч</u> астные корреляции 🛛 🏢 Матрица 2	только квадратные матрицы)	
Частные к фиксирова	коррелции вычисляются для переменных 1ro списка при ании переменных 2ro списка	CASES Y	
. 🖉	<u>2</u> М рассеяния с именами	Взвешенные моменты	
U.	<u>3</u> М рассеяния с именами	Ст. свободы В-1 П N-1	
🔠 Ma	атричный график 🔚 Катег, диаграммы рассеяния	Удаление ПД	
l 🔄	Поверхность	 Построчное Попарное 	

Рисунок 8.4 – Выбор опций для построения диаграммы рассеяния

Программа построит диаграмму рассеяния (Рисунок 8.5), на которой по оси х отложены значения переменной вес, а по оси у – значения переменной рост. Диагональная линия данного графика служит для оценки линейности связи. Как видно, точки соответствующих данных расположены вдоль этой линии на близком расстоянии. Поэтому можно утверждать о наличии линейной зависимости между переменными. Вместе с точечной диаграммой рассеяния программа строит гистограммы для анализируемых переменных, по которым можно проверить условие о нормальности распределения, которое, как видно из нашего примера, выполняется. Поскольку условия для применения коэффициента корреляции Пирсона выполняются.

Рисунок 8.5 – Вывод гистограммы и диаграммы рассеяния

4) Рассчитать коэффициент корреляции Пирсона. Для этого продолжаем анализ во вкладке Парные и частные корреляции, нажав на кнопку Матрица парных корреляций (Рисунок 8.6).

В результате появляется таблица результатов анализа из которой видно, что между переменными существует высокая (r=0,971) достоверная (p<0,05) связь.

	Корреляці Отмеченн N=40 (Пос	ии (Таблиц ые коррел строчное у	ца данных іяции значі даление Г	1) имы на ур Ю)	овне р <,0	5000
Переменная	Рост					
Bec	0,974359					

Рисунок – 8.6 Таблица с данными коэффициента корреляции Пирсона

Задание 2. Выполнить корреляционный анализ в пакете Statistica, используя коэффициент ранговой корреляции Спирмена. Проведем анализ связи между числом выявленных особей имаго стрекоз в различных биотопах и температурой воздуха во время полевых исследований.

Для использования коэффициента ранговой корреляции Спирмена, отражающего степень связи между двумя переменными, выполнение таких условий как нормальность распределения и наличие линейной связи между признаками не требуется. Расчет данного коэффициента предполагает распределение значений исследуемой переменной на отдельные группы – ранги. При этом анализируется наличие связи не между отдельными значениями, а между их рангами.

1) Загрузить таблицу с данными из MS Excel (Рисунок 8.7).

		А - [Данные: Табл	ица данных1* (1	0v * 27c)]
	<u> </u>	Пр <u>а</u> вка <u>В</u> ид В <u>с</u>	тавка Фор <u>м</u> ат	<u>А</u> нализ Добь
	🛛 🗅 🖻 日	12 5 0. 1	- 🗈 🛍 🝼 🕒	о ⇔ МА До
	Arial		10 - B I	Ū ≣≣
		1	2	3
		биотоп	среднее числ	средняя тел
	1	сосновый лес	97	17,5
	2	сосновый лес	94	16
	3	сосновый лес	192	18
	4	сосновый лес	188	18
· · · · · · · · · · · · · · · · · · ·	5	сосновый лес	190	18,5
	6	сосновый лес	191	18
	7	сосновый лес	82	17,3
	8	сосновый лес	184	19
	9	сосновый лес	190	20,7
	10	берег озера	928	24
	11	берег озера	629	22,3
	12	берег озера	743	22,3
	13	берег озера	1098	25
	14	берег озера	796	24
	15	берег озера	588	22
	16	берег озера	954	24,6
	17	берег озера	1083	24,3
	18	берег озера	791	23,8
	19	луг	192	19
	20	луг	168	20
	21	луг	171	19,5
	22	луг	172	21,5
	23	луг	219	21
	24	луг	215	22
	25	луг	292	21
	26	луг	167	20,5
	27	луг	321	23,6

Рисунок 8.7 – Загрузка данных из MS Excel в Statistica

2) Для того, чтобы убедиться, что использование корреляции Пирсона не корректно, проверьте данные на соответствие закону нормального распределения сначала для переменной рост, затем для переменной вес, используя модуль Анализ/основные статистики и таблицы/нормальность (Рисунок 8.8).

Рисунок 8.8 – Гистограммы распределения переменных роста и веса

3) Как видно из рисунков, для переменной среднее число экземпляров условие нормальности распределения не выполняется. Это подтверждает и показатель критерия Шапиро-Уилка (p<0,05). Поэтому требуется применение коэффициента ранговой корреляции Спирмена.

4) Рассчитать коэффициент ранговой корреляции Спирмена. Выбираем модуль Анализ/непараметрическая статистика/Корреляция Спирмена (Рисунок 8.9).

Рисунок 8.9 – Выбор коэффициента ранговой корреляции Спирмена

Далее выбираем матрицу двух списков и анализируемые переменные и нажимаем на кнопку Спирмена R (Рисунок 8.10).

🕍 Ранговые корреляции: Таблица данных1	8 23	💊 Выберите два списка переменны	IX:	? ×
Список 1: нет Список 2: нет Вычислить: Матрица двух списков • Быстрый Дополнительно	<u></u> Отмена Опции ▼ С <u></u> Опции ▼	1 - биотоп 2 - среднее число экземпляров 3 - средняя температура воздуха 4 - Пер4 5 - Пер5 6 - Пер5 6 - Пер7 8 - Пер7 8 - Пер8 9 - Пер9 10 - Пер10	1 - биотоп 2 - среднее число экземпляров 3 - средняя температура воздуха 4 - Пер4 5 - Пер5 6 - Пер5 6 - Пер7 8 - Пер8 9 - Пер9 10 - Пер10	ОК Отмена [Наборы] Используйте опцию "Подходящие переменные" для предварительного
ш Гамма Ш Гамма Ш Тау Кендалла Р-У Вы Ш Матричная диаграмма	ровень для целения : 5	Все Подробно Инфо Первый список переменных: 2 Подходящие переменные	Все Подробно Инфо Второй список переменных: 3	отвора категориальных и непрерывных переменных. Нажинте F1 для получения оправки.

Рисунок 8.10 – Выбор матрицы двух списков и анализируемых переменных

В результате появляется таблица результатов анализа (Рисунок 8.11), из которой видно, что между переменными существует высокая (rs=0,874) достоверная (p<0,05) связь.

	Ранговые корреляции Спирмена (Таблица данных1) ПД попарно удалены Отмеченные корреляции значимы на уровне р <,05000
	средняя
	температура
Перем.	воздуха
среднее число экземпляров	0,874332

Рисунок 8.11 – Таблица результата анализа ранговой корреляции Спирмена

Задание 3. Выполнить корреляционный анализ в пакете PAST, используя коэффициент корреляции Пирсона. Провести анализ связи между ростом и весом студентов биологического факультета.

1) Загрузить таблицу с данными из MS Excel (Рисунок 8.12).

		11.44			-			
	Раст	Bec	flan	0	E	F	G	
Анастасия	155	42	ж		_		_	
Инна	157	44	ж		_		_	
Анастасия	162	45	ж				_	
Татыяна	164	48	ж		_		_	
Виктория	164	47	×		_		-	
Вероника	165	48	ж		_			
Валерия	165	49	ж				-	
Анна	166	50	ж		_		_	
Анна	167	53	ж					
Светлана	168	54	×		_	_		
Опьга	168	52	ж		_		_	
Екатерина	170	68	ж					
Юлия	173	60	ж					
Яна	174	60	ж					
Дарья	174	62	*					
Марина	175	62	ж					
Галина	175	65	ж					
Валерия	175	63	26					
Ирина	178	70	*					
Александра	a 182	78	*					
Евгений	170	59	M					
Николай	172	60	M		1			
Oner	175	65	M					
Михаил	178	67	M					
Иван	176	68	M					
Briag	178	70	M					
Виктер	180	77	M		1			
Илья	180	75	M					
Ceprež	181	77	M					1
Андрей	181	78	M					
Дмитонй	181	75						
Алсений	187	77						
Паниил	182	78						
Илья	183	78						
Kununn	103	93						
Ланатонії	103	70						
Анарей	103	70						
Maka	100	15						
Centrell	100	00						
Augent	109	00	M					
мндреи	195	91	м					

Рисунок 8.12 – Загрузка данных из MS Excel в PAST

2) Выполнить проверку на соответствие данных закону нормального распределения, выбрав вкладку Statistics/Normality tests (Рисунок 8.13).

Рисунок 8.13 – Выбор модуля Normality tests во вкладке Statistics

Как видно из таблиц (Рисунок 8.14), для обоих переменных условие нормальности распределения выполняется, что подтверждает и показатель критерия Шапиро-Уилка (р>0,05).

Tests for normal	al distribution		ſ	Tests for norma	al distribution	
	Рост				Bec	
Ν	40			N	40	
Shapiro-Wilk W	0,9782			Shapiro-Wilk W	0,9597	
p(normal)	0,6233		L	p(normal)	0,1642	
Jarque-Bera JB	0,3821			Jarque-Bera JB	1,897	
p(normal)	0,8261			p(normal)	0,3872	
p(Monte Carlo)	0,805			p(Monte Carlo)	0,2248	
Chi [^] 2	2,6			Chi^2	5,2	
p(normal)	0,10686			p(normal)	0,022587	
Chi^2 OK (N>20)	YES			Chi^2 OK (N>20)	YES	
Anderson-Darling A	0,4102			Anderson-Darling A	0,5488	
p(normal)	0,328			p(normal)	0,148	
	×	P			×	

Рисунок 8.14 – Результаты анализа по критерию Шапиро-Уилка

3) Рассчитать коэффициент корреляции Пирсона, используя вкладку Statistics/Correlation table. При этом в нижнем левом углу нужно выставить метку Linear correlation (Рисунок 8.15).

Рисунок 8.15 - Расчет коэффициента корреляции Пирсона

Из таблицы результатов анализа (Рисунок 8.15) видно, что между переменными существует высокая (r=0,974) достоверная (p<0,05) связь.

Задание 4. Выполнить корреляционный анализ в пакете в пакете РАЅТ, используя коэффициент ранговой корреляции Спирмена. Провести анализ связи между числом выявленных особей имаго стрекоз в различных биотопах и температурой воздуха во время полевых исследований.

File Edit	Transform Plot	Statistics Multivar Model	Diversity Time Geomet Stra abels 🗌 Square mode	
	биотоп	среднее_число_экземпляров	средняя_температура_воздуха	
1	сосновый_лес	97	17,5	
2	сосновый_лес	94	16	
3	сосновый_лес	192	18	
4	сосновый_лес	188	18	4
5	сосновый_лес	190	18,5	
6	сосновый_лес	191	18	
7	сосновый_лес	82	17,3	
8	сосновый_лес	184	19	
9	сосновый_лес	190	20,7	
10	6eper_osepa	928	24	
11	6eper_osepa	629	22,3	
12	6eper_osepa	743	22,3	
13	берег_озера	1098	25	
14	берег_озера	796	24	
15	берег_озера	588	22	
16	берег_озера	954	24,6	
17	6eper_osepa	1083	24,3	
18	6eper_osepa	791	23,8	
19	луг	192	19	
20	луг	168	20	
21	луг	171	19,5	
22	луг	172	21,5	
23	луг	219	21	
24	луг	215	22	
25	луг	292	21	
26	луг	167	20,5	
27	луг	321	23,6	
28				
29				
30				

1) Загрузить таблицу с данными из MS Excel (Рисунок 8.16).

Рисунок 8.16 – Загрузка данных из MS Excel в PAST

2) Выполнить проверку на соответствие данных закону нормального распределения, выбрав вкладку Statistics/Normality tests (Рисунок 8.17).

Рисунок 8.17 - Выбор модуля Normality tests во вкладке Statistics

Как видно из таблиц (Рисунок 8.18), для переменной «среднее число экземпляров» условие нормальности распределения не выполняется: показатель критерия Шапиро-Уилка (р<0,05).

Tests for norm	al distribution	ſ	Tests for normal	al distribution	
	среднее_число_эк:			средняя_температ	
N	27		N	27	
Shapiro-Wilk W	0,7828		Shapiro-Wilk W	0,956	
p(normal)	6,984E-05		p(normal)	0,2989	
Jarque-Bera JB	4,412		Jarque-Bera JB	1,466	
p(normal)	0,1102		p(normal)	0,4806	
p(Monte Carlo)	0,0469		p(Monte Carlo)	0,2716	
Chi ^A 2	6,037		Chi [^] 2	1,8889	
p(normal)	0,014009		p(normal)	0,16933	
Chi^2 OK (N>20)	YES		Chi^2 OK (N>20)	YES	
Anderson-Darling A	2,642		Anderson-Darling A	0,3835	
p(normal)	7,415E-07		p(normal)	0,3717	
	×		P	×	

Рисунок 8.18 – Результаты анализа нормальности распределения для переменной «среднее число экземпляров» по критерию Шапиро-Уилка

3) Выполнить корреляционный анализ, использовав вкладку Rank/ordinal correlation (Рисунок 8.19).

Рисунок 8.19 – Результаты корреляционного анализа

Как видно из таблицы результатов анализа (Рисунок 8.19), между переменными существует высокая (rs=0,8743) достоверная (p<0,05) связь.

Задание 5. Выполнить самостоятельно корреляционный анализ, используя приведенные выше схемы, в пакетах Statistica и PAST для данных, предложенных преподавателем.

Контрольные вопросы:

1. Понятие корреляционного анализа. Виды корреляций.

2. Отличия корреляционного и дисперсионного анализов.

3. Условия применения корреляционного анализа с использованием коэффициента Пирсона.

4. Непараметрический корреляционный анализ. Понятие ранговой корреляции.

5. Объяснить результаты корреляционного анализа на предложенном примере.

ЛАБОРАТОРНАЯ РАБОТА № 9 Основы регрессионного анализа

Цель: получить практические навыки и закрепить на конкретных примерах знания о методиках проведения регрессионного анализа.

Программное обеспечение: базы данных MS Excel, пакет анализа Statistica.

Основные термины и понятия: зависимая и независимая переменные (предиктор); уравнение регрессионного анализа; нулевая гипотеза при регрессионном анализе; коэффициент детерминации; понятие о нелинейной и множественной регрессионной зависимости; разведочный анализ: проверка на нормальность распределения (визуальный анализ гистограммы распределений и тесты Колмогорова-Смирнова, Шапиро-Уилка), выявление линейной или нелинейной зависимости, проверка нормальности распределения остатков, оценка величины остаточной дисперсии.

Задание 1. Выполнить регрессионный анализ в пакете Statistica. Проанализировать зависимость величины систолического артериального давления от возраста человека.

Прежде чем приступить к анализу, нужно помнить, что обе переменные должны подчиняться закону нормального распределения и зависимость между ними должна носить линейный характер.

1) Загрузить таблицу с данными из MS Excel (Рисунок 9.1).

	А - [Данны	е: Таблица	данн
<u>Ф</u> айл	Пр <u>а</u> вка <u>В</u> і	ид В <u>с</u> тавка	φ
🛛 🗅 🖻 日	1 🔁 🖨 [3. 🐰 🗈	ß
Arial		v 10	•
		_	
	1	2	
	возраст,	давлени	Π
1	. 30	110	
2	30	106	
3	40	120	
4	40	118	
5	40	125	
6	50	135	
7	50	133	
8	50	134	
9	60	150	
10	60	148	
11	. 60	151	
12	60	152	
13	70	164	
14	70	160	
15	70	162	
16	i 70	161	

Рисунок 9.1 – Загрузка данных из MS Excel в Statistica

2) Выполнить проверку данных на соответствие закону нормального распределения с помощью модуля Описательные статистики.

Как видно по показателю критерия Шапиро-Уилка (p>0,05), в обоих случаях данные распределены нормально (Рисунок 9.2).

Рисунок 9.2 – Гистограммы распределения исследуемых показателей

3) Запустить модуль Анализ/Множественная регрессия и выбрать переменные (Рисунок 9.3).

Рисунок 9.3 – Выбор переменных для проведения множественной регрессии

Нажать на ОК. Но прежде чем начать анализировать результаты регрессионного анализа, нужно убедиться, что зависимость между признаками носит линейный характер. Для этого выбираем вкладку Остатки/предсказанные /наблюдаемые значения и нажимаем на кнопку Описательные статистики (Рисунок 9.4).

Результаты множественной регре-	ссии: Таблица данных1	? ×]
Результаты множ. регрессии			
Зав.перем.:давление, мм.р	MHOWECT. R = ,99387365 F = 113 R2= ,98778483 cc = 1	2,115,14	
Стандартная оп Стандартная оп Св. член: 66 505307856 Ст	скоррект.к2= ,98691231 р = ,0 ибка оценки: 2,209939770 опибка: 2,233277 t.(14) = 29,779	n = 0000	
возраст, лет бета=,994			
(выделены значиные бета)		Ch ±	
Выделяемый р-уровень: ,05 🚔	K	СТ ОК	
Быстрый Дополнительно Остатки/	предсказанные/наблюдаемые значения	Отмена	
Анализ остатков	Предсказанные значения	🔊 Опции 🔻	
Описательные статистики	Дов. интервал для среднего р-уров.:	По Группам	
📝 С <u>г</u> енерировать код 🔻	🗇 Дов. интервал для предсказ05 🚔		

Рисунок 9.4 – Оценка характера зависимости между признаками

В появившемся окне выбираем Матричный график, после чего выбрав переменные, нажимаем на ОК (Рисунок 9.5).

Иросмотр описательных статистик: Таблица данных1	8 22	Выбрать переменные	? X
Пропущ. данные построчно удалены 16 набл. обработано 16 набл. принято	£5 ★	1-Bospact, net 2-давление, ул.рт.ст.	ОК Отмена [Наборы]
Быстрый Дополнительно Матричный Ш Средние и ст.отклонения Диагрании размаха	Отмена	P	
Корреляции Ш Матричный график Ш Ковариации Ст.откл.=Sqrt(SS/N)	Опции • По Группам	Выбрать все Подробно Инфо Переменные для матричного графика:	J

Рисунок 9.5 – Выбор опции «Матричный график» и анализируемых Переменных

Как видно из графиков (Рисунок 9.6), переменные имеют линейную зависимость, то есть данное условие выполняется.

Рисунок 9.6 – Графики линейной зависимости исследуемых переменных

4) Выполнить регрессионный анализ, вернувшись в модуль Анализ/множественная регрессия/текущий анализ (Рисунок 9.7).

Результаты множественной регрессии: Таблица данных1	
Результаты множ. регрессии	
Зав.перем.:давление, ым.р Множест. R = ,99387365 F = 1132,115 R2= ,98778483 cc = 1,14	
Число набл.: 16 Скоррект.R2= ,98691231 p = ,000000 Стандартная ощибка оценки: 2,209939770	
Св.член: 66,505307856 Ст.ошибка: 2,233277 t(14) = 29,779 p = ,0000	
возраст, лет бета=,994	
(выделены значизане бета) Вр ±	
Выделяемый руровень:	
Быстрый Дополнительно Остат упредсказанные/наблюдаемые значения	
Итоговая таблица регрессии	
	•

Рисунок 9.7 – Выбор опций для выполнения регрессионного анализа

Исходя из результатов регрессионного анализа (Рисунок 9.8), можно утверждать, что между анализируемыми переменными существует достоверная связь (p<0,05). Значение коэффициента детерминации указывает (R2=0,986) свидетельствует высокой точности данной регрессионной модели и она хорошо описывает связь между двумя переменными.

	Итоги регрессии для зависимой переменной: давление, мм.рт.ст. (Таблица данных1) R= .99387365 R2= .98778483 Скоррект. R2= .98691231									
	F(1,14)=1	F(1,14)=1132,1 p<,00000 Станд. ошибка оценки: 2,2099								
	БЕТА	Ст.Ош.	В	Ст.Ош.	t(14)	р-знач.				
N=16	J	БЕТА		В						
Св.член			66,50531	2,233277	29,77925	0,000000				
возраст, лет	0,993874	0,029538	1,37049	0,040731	33,64692	0,000000				

Рисунок 9.8 – Результаты регрессионного анализа

5) Проанализировать регрессионное уравнение.

Уравнение имеет следующий вид: y=a+bx, где у – зависимая переменная, x – независимая переменная, a – свободный член (Intercept), b – ко-эффициент регрессии.

В нашем случае уравнение будет выглядеть так: АД=66,50531+1,37049*В

где, АД (зависимая переменная) – систолическое артериальное давление, В – возраст (независимая переменная), 66,50531– свободный член, 1,37049 – коэффициент регрессии.

Подставив в уравнение определенный возраст, можно предсказать показатели артериального давления.

6) Проверить остатки на нормальность распределения. Важным компонентом регрессионного анализа в нашем случае является нормальность распределения остатков. Остатки представляют собой разность между наблюдаемыми значениями зависимой переменной и другими, предсказанными значениями. Чем лучше регрессионная модель согласуется с анализируемыми переменными, тем меньше величина остатков и тем меньше влияние других, неучтенных переменных. Выполнить проверку можно, использовав: Анализ остатков/ Нормальный график остатков (Рисунок 9.9).

Рисунок 9.9 – Проверка остатков на нормальность распределения

Как видно из рисунка (Рисунок 9.10), точки достаточно тесно выстраиваются вдоль воображаемой прямой, что позволяет предположить о нормальности распределения.

Рисунок 9.10 – Графический анализ нормальности распределения

Проверить гомогенность дисперсии остатков. Гомогенность (неизменность) остатков еще одно необходимое условие регрессионного анализа. Выполнить проверку можно с помощью диаграммы рассеяния (Рисунок 9.11).

Анализ остатков: Таблица данных1	8 ×
Зав.перем.:давление, м Множест. R: 99387365 F = 1132,115 R2: ,98778483 cc = 1,14 Число набл.: 16 Скоррект. R2 ,98691231 p = ,000000 Стандартная ошибка оценки: 2,209339770 Св.член: 66,505307856 Ст. ошибка: 2,233277 t (14) = 29,779	p < ,0000
Диаграммы рассеяния Вероятностные графики Выбросы Сохранить Быстрый Дополнительно Остатки Предсказанные ша Остатки и предсказанные Предсказанные Предсказанные П Нормальный график остатков Остатки Предсказанные	
Инализ остатков: Таблица данных1	8 ×
Зав.перем.:давление, м Множест. R: ,99387365 F = 1132,1 R2: ,98778483 cc = 1,14 Число набл.: 16 Скоррект. R2 ,98691231 p = ,0000 Стандартная ощибка оценки: 2,209939770 Св.член: 66,505307856 Ст.ощибка: 2,233277 t(14) = 29,7	15 00 79 p < ,0000 Ph ±
Быстрый Дополнительно Остатки Предсказанны Диаграммы рассеяния Вегоятностные графики Выбросы Сохран Предсказанные и остатки Набл. и квадраты остатков Остатки и удаленные остатки Предсказ. и квадраты остатков Остатки и удаленные Предсказ. и наблюдаемые Две переменные Наблюдаемые и остатки График частных остатков	не) ШШ ОК Отмена Г∑ Опщи ▼ ШП О Группам

Рисунок 9.11 – Выбор опций для построения диаграммы рассеяния

Точки на данном графике должны быть разбросаны хаотично, то есть без всякой закономерности, что и наблюдается в нашем случае.

Рисунок 9.11 Диаграмма рассеяния для проверки гомогенности дисперсии остатков

Контрольные вопросы:

1. Понятие регрессионного анализа.

2. Условия применения регрессионного анализа. Разведочный анализ данных.

3. Объяснить результаты регрессионного анализа на предложенном примере.

4. Охарактеризовать уравнение регрессии.

1. Понятие остатков и их оценка.

2. Какие типы дисперсионного анализа применяются при отсутствии нормального распределения и (или)линейной зависимости между переменными.

ЛАБОРАТОРНАЯ РАБОТА № 10 Элементы многомерной статистики (многофакторный анализ)

Цель: получить практические навыки и закрепить на конкретных примерах знания о методиках проведения многомерного анализа данных.

Программное обеспечение: базы данных MS Excel, пакет анализа Past.

Основные термины и понятия: многомерная совокупность и многомерное пространство; ординация и ординационные диаграммы; кластерный анализ, правила объединения объектов в кластеры и меры расстояния, графическое изображение результатов кластерного анализа; понятие дискриминантного анализа; прямой и непрямой градиентный анализ, анализ главных компонент, кумулятивная объясненная дисперсия; многомерное шкалирование.

Задание 1. Выполнить кластерный анализ в пакете Past. Исследовать сходство комплексов стрекоз различных биотопов по количественным данным.

1) Загрузить таблицу с данными из MS Excel (Рисунок 10.1).

Intitled															
File Edit	Transform	Plot Sta	tistics Mul	tivar Mode	el Diversity	Time Ge	eomet Stra	t Cladistic	s Script						
۵ 😫	8	📴 🔁 I	Edit mode	🕅 Edit	labels	Square m	iode								
	Calopteryx_	Lestes_drya	Lestes_spor	Sympecma_	Coenagrion_	Coenagrion_	Coenagrion_	Coenagrion_	Erythromma	Enallagma_c	lschnura_ele	Nehalennia_	Aeshna_cya	Aeschna_gr	Aeshna_jur
сосновый_л	0	7	0	2	6	3	11	0	0	2	0	2	5	0	0
смешанный	0	8	0	1	1	1	0	0	0	4	0	0	6	1	0
луг	0	0	5	0	6	2	0	0	0	5	0	0	1	0	0
6eper_osepa	1	60	14	4	83	7	90	0	0	0	87	0	0	0	0
5															

Рисунок 10.1 – Загрузка данных из MS Excel в Past

2) Запустить модуль Multivar/Cluster analysis (Рисунок 10.2).

Рисунок 10.2 – Запуск модуля Multivar для кластерного анализа

Нажать на ОК. В появившемся окне будет видна кластерная дендрограмма (Рисунок 10.3), построенная по параметрам автоматически заложенным в программе. Пользователь может сам выбирать параметры, такие как алгоритм (Parried group – по парного сравнения, Single linkage – одиночной связи, Wards method – метод минимизации внутригрупповой дисперсии Уорда) а также меру сходства (Similarity measure). Выберите алгоритм Single linkage и меру сходства Брэя-Кертиса.

Рисунок 10.3 – Полученная кластерная дендрограмма

Как видно из дендрограммы, наибольшим сходством обладают комплексы стрекоз соснового и смешанного лесов, а наиболее отличаются от них группировки стрекоз, зарегистрированные по берегу озера.

Задание 2. Выполнить анализ главных компонент (PCA – Principal Component Analysis) в пакете Past.

1) Загрузить таблицу с данными из MS Excel (Рисунок 10.4). Предварительно, для лучшего графического представления результатов анализа, нужно ввести аббревиатуры названий анализируемых параметров в таблице данных. Например, латинские названия видов сокращают, как правило, до 6 букв (три первые буквы названия вида и три первые буквы названия рода). Также во многих случаях, с целью снижения так называемого «шума» удаляют некоторые второстепенные значения, например, виды, представленные в сборах менее, чем 5 экземплярами и т.д.

🛷 Untitled	_				_				_								
File Edit	Transform	Plot Sta	tistics Mul	tivar Mode	Diversity	Time Ge	eomet Stra	t Cladistics	s Script								
۵ 😫	😑 📴 💁 🕫 📴 🔽 🔽 Edit mode 🗆 Edit labela 🖉 Square mode																
	Код_биотоп	Aci_can	Aci_sul	Ana_lut	Coly_fus	Dyt_cir	Eno_aff	Eno_och	Gyr_nat	Hel_aqu	Hel_gra	Hel_gri	Hyd_fus	Hyd_ery	Hyd_tri	lly_aen	lly_gut
L1_	L	2	6	0	4	11	2	18	0	2	0	11	0	1	0	12	9
S1	S	14	17	0	0	4	0	0	27	0	9	0	0	5	0	0	13
H1	н	12	6	15	0	1	32	0	0	8	0	0	12	4	12	2	0
L2	L	0	8	0	5	13	3	20	0	3	0	15	0	2	0	16	11
S2	S	10	19	0	0	6	0	0	31	0	12	0	0	7	0	0	15
H2	н	9	8	22	0	1	41	0	0	11	0	0	14	4	15	3	1
L_3	L	1	4	0	3	9	1	14	0	1	0	9	0	0	0	8	7
S3	S	12	14	0	0	3	0	0	22	0	7	0	0	3	0	0	9
H3	н	11	3	12	0	0	25	0	0	5	0	0	11	3	12	2	0
L4	L	2	6	0	4	11	2	18	0	2	0	11	0	1	0	12	9
S4	S	10	19	0	0	6	0	0	31	0	12	0	0	7	0	0	15
H4	н	11	3	12	0	0	25	0	0	5	0	0	11	3	12	2	0
L5_	L	1	4	0	3	9	1	14	0	1	0	9	0	0	0	8	7
S5	S	10	19	0	0	6	0	0	31	0	12	0	0	7	0	0	15
H5	н	12	6	15	0	1	32	0	0	8	0	0	12	4	12	2	0
16																	

Рисунок 10.4 – Загрузка данных из MS Excel в Past

2) Выполнить анализ, использовав модуль Multivar/Principal Components (Рисунок 10.5).

Рисунок 10.5 – Выбор вкладки Principal Components в модуле Multivar

В открывшемся окне будет таблица, которая показывает значения факторных нагрузок и процент их дисперсии на оси (главные компоненты – РС) (Рисунок 10.6). Наибольшие показатели дисперсии, в нашем случае, приходится на первую (61,542 %) и вторую компоненты (35,547 %).

Рисунок 10.6 – Таблица значений факторных нагрузок и процент их дисперсии на оси

Поскольку анализ главных компонент относится к группе непрямых градиентных анализов, мы можем только предположить, что есть два основных фактора в наибольшей степени влияющих на биотопическое распределение анализируемых видов, а остальные факторы оказывают меньшее влияние. Их отражают остальные компоненты (с 3 по 14).

3) Построить ординационную диаграмму. Выберите в открытом окне анализа View scatter. Затем справа обозначьте тип диаграммы (Biplot) и подписи данных (Row labels) (Рисунок 10.7). Изменить параметры диаграммы можно с помощью контекстного меню, выбрав тип и размеры шрифта, введя подписи осей и др., а также формат для сохранения в виде графического файла (Рисунок 10.8).

Рисунок 10.7 – Ординационная диаграмма

Graph preferences	
Grid Colors Axes Point symbols Centered axes Thick lines	Filled regions Font Frame Blue background
Symbol size:	Width: 771
Vertical font rotation: • 90	Height: 661
Maximal tick marks x: 🔹 11 Maxi	imal tick marks y: 11
X label: Component 1	Colorbar min: -5,487458222!
Y label: Component 2	Colorbar max: 7,0641644724
	Color scheme: Cold-Hot 💌
Concentration ellipse level (%): 95	
OK Export ellipses	Save picture
5	

Рисунок 10.8 – Изменение параметров диаграммы

Анализ ординационной диаграммы второй важный этап, позволяющий предположить, какие факторы оказывают влияние на анализируемые переменные. В предложенном примере координаты одних видов в большей степени расположены вдоль оси X (первая главная компонента), а координаты других видов в большей степени расположены вдоль оси У (вторая главная компонента). Зная экологические преферендумы данных видов, исследователь предполагает возможные причины такой группировки. В тоже время это требует высокой профессиональной подготовки. Для исследовательской студенческой работы наибольшую ценность будет представлять ординация (упорядочивание) одних объектов по отношению к другим. В частности из построенной диаграммы можно увидеть, какие виды наиболее ассоциированы с определенными местообитаниями. Виды здесь представлены векторами, а биотопы точками. Чем ближе расположен и длиннее вектор, тем больше связь.

Какие конкретно факторы имеют ту или иную связь с анализируемыми переменными, можно выяснить, применив прямой градиентный анализ, в частности многомерное шкалирование или канонический анализ соответствий, введя дополнительно вторую таблицу данных с измерениями, например, абиотических факторов.

Задание 3. Выполнить самостоятельно кластерный анализ, используя приведенные выше схемы, в пакете Past для данных, предложенных преподавателем.

Задание 4. Выполнить самостоятельно анализ главных компонент, используя приведенные выше схемы, в пакете Past для данных, предложенных преподавателем.

Контрольные вопросы:

1. Понятие многомерного анализа и ординации.

2. Прямой и непрямой градиентный анализы.

3. Кластерный анализ и его визуализация.

4. Анализ главных компонент и его визуализация.

5. Преобразование данных при многомерном анализе.

ИТОГОВОЕ ЗАНЯТИЕ ПО МОДУЛЮ 2

Отчет о выполнении заданий по модулю «Анализ данных». Вариант №.....

1. В соответствии с типом распределения анализируемых данных для сравнения двух независимых выборок выбран параметрический (непараметрический) тест......

Таблица 1. Результаты проверки выборочных совокупностейс использованием теста.....

Рисунок 3. Диаграмма размаха средних величин

Вывод. Между выборками установлены статистически достоверные различия или не установлены и согласно чему (значение коэффициента (t, U)....., p=.....). Значениядостоверно выше.....

2. В соответствии с типом распределения анализируемых данных для сравнения двух независимых выборок использован параметрический (непараметрический) дисперсионный анализ......

Таблица 1. Результаты проверки выборочных совокупностейс использованием дисперсионного анализа

Таблица 2 Результаты апостериорных сравнений

Рисунок 4. Диаграмма размаха средних величин

Вывод. Между выборками установлены статистически достоверные различия или не установлены и согласно чему (значение коэффициента, р=.....). Значениядостоверно выше для.....

3. В соответствии с типом распределения анализируемых данных для выявления зависимости между двумя переменными использован коэффициент корреляции.....

Таблица 3 Результаты корреляционного анализа

Вывод. Между и выявлена положительная (отрицательная) достоверная (p=) корреляционная зависимость. Связь между переменными сильная, средняя и т.д. (r (rs)= \dots). Или зависимость не установлена (p=).

4. Для выявления сходства между анализируемыми данными проведен кластерный анализ с использованием меры сходства.....

Рисунок 5. Дендрограмма сходства.....

Наибольшим Вывод. сходством обладают....., тогда как наименьшим....

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Введение в статистическое обучение с примерами на языке R / Е. Джеймс, Д. Уитгон, Т. Хасти, Р.В. Тибширани; пер. с англ. С.Э. Мастицкого. – 2-е изд., испр. – Москва: ДМК Пресс, 2017. – 456 с.

2. Дворецкий, М.Л. Пособие по вариационной статистике / М.Л. Дворецкий. – М.: «Лесная промышленность», 1971. – 134 с.

3. Ивантер, Э.В. Элементарная биометрия: учеб. пособие / Э.В. Ивантер, А.В. Коросов. – Петрозаводск: Изд-во ПетрГУ, 2010. – 104 с.

4. Лакин, Г.Ф. Биометрия / Г.Ф. Лакин. – Изд. четвертое, перераб. и доп. – Москва: «Высшая школа», 1990. – 350 с.

5. Орлов, А.И. Математика случая. Вероятность и статистика – основные факторы / А.И. Орлов. – М.: МЗ-Пресс, 2004. – 158 с.

6. Рокицкий, П.Ф. Биологическая статистика / П.Ф. Рокицкий. – Изд. 3-е, испр. – Минск: «Вышэйш. школа», 1973. – 320 с.

7. Халафян, А.А. Statistica 6. Статистический анализ данных / А.А. Халафян. – Москва: ООО Бином-Пресс, 2007. – 512 с.

8. Чайковская, Н.А. Биометрия: курс лекций: в 2 ч. / Н.А. Чайковская. – Гродно: ГрГУ, 2012. – 56 с.

9. Hammer, Ø., Harper, D.A.T., and P.D. Ryan, 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4(1): 9pp.

46

Учебное издание

СУШКО Геннадий Геннадьевич ЛИТВЕНКОВА Инна Александровна

БИОМЕТРИЯ

Методические указания для проведения лабораторных работ

В 2 частях

Часть 2

Технический редактор Компьютерный дизайн Г.В. Разбоева Е.В. Крайло

Подписано в печать 03.10.2019. Формат 60х84 ¹/₁₆. Бумага офсетная. Усл. печ. л. 2,73. Уч.-изд. л. 1,21. Тираж 60 экз. Заказ 106.

Издатель и полиграфическое исполнение – учреждение образования «Витебский государственный университет имени П.М. Машерова».

Свидетельство о государственной регистрации в качестве издателя, изготовителя, распространителя печатных изданий № 1/255 от 31.03.2014 г.

Отпечатано на ризографе учреждения образования «Витебский государственный университет имени П.М. Машерова». 210038, г. Витебск, Московский проспект, 33.