$$P_{1} = \frac{\lambda}{\lambda + \mu} \tag{4}$$

Полученные зависимости вероятностей состояний системы машин «харвестер – форвардер» позволяют установить рациональные значения параметров рассматриваемых машин. Технология работы с зависимостями следующая: на основе конкретных природно-производственных условий выбирается марка оборудования, например форвардера, работа которого характеризуется интенсивностью μ ; из зависимостей (3) и (4) устанавливается рациональное значение параметра λ , по которому в дальнейшем подбирается конкретная марка харвестера [2, 3].

На рис. 3 приведен пример установления рациональной интенсивности λ работы харвестера в зависимости от конкретной интенсивности μ работы форвардера.

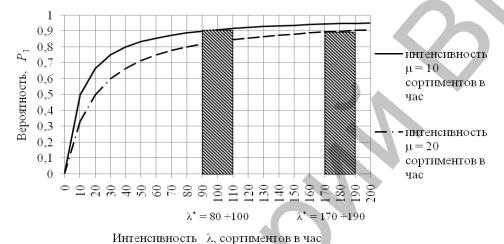


Рис. 3. Зависимости вероятностей состояний системы «харвестер – форвардер»

Принятый на основании рис. 3 оптимальный диапазон значений λ^* позволяет осуществить выбор требуемого харвестера, обеспечивающего рациональную загрузку применяемого форвардера, т. к. при этом обеспечивается оптимальная величина вероятности его работы P_1^* .

Заключение. Данная математическая модель может быть использована на производстве, при составлении эффективной системы машин «харвестер – форвардер» в зависимости от конкретных природно-производственных условий, при наименьших экономических затратах.

Построение математической модели, ее решение и анализ, полученных решений могут быть использованы при обучении студентов, технических специальностей.

- 1. Игнатенко В.В., Турлай И.В., Федоренчик А.С. Моделирование и оптимизация процессов лесозаготовок. Минск: БГТУ, 2004. 178 с.
- Игнатенко В.В., Леонов Е.А. Установление рациональных параметров многооперационных машин в лесозаготовительной промышленности // Актуальные направления научных исследований XXI века: теория и практика, 2015. Т. 3. № 5-4. С. 291–295.
- 3. Леонов Е.А., Игнатенко В.В., Клоков Д.В. Математическая модель работы рубильной машины с учетом ее технических отказов // Труды БГТУ, 2016. № 2: Лесная и деревообр. пром-сть. С. 40–44.

О ХАРАКТЕРИЗАЦИИ ИНЪЕКТОРОВ ДЛЯ МНОЖЕСТВ ФИШЕРА

Т.Б. Караулова Витебск, ВГУ имени П.М. Машерова

Все группы, рассматриваемые нами в настоящей работе, конечны. В обозначениях и определениях будем следовать [1]. В работе [2] была определена F-подгруппа Фишера группы G. Пусть F – класс Фиттинга. Подгруппа F группы G называется F-подгруппой Фишера G, если выполняются следующие условия:

(1) $F \in F$; (2) если $F \le H \le G$, то $H_F \le F$.

В [2] было доказано, что в любой конечной разрешимой группе для каждого класса Фиттинга существуют F-подгруппы Фишера и сопряжены для класса Фиттинга, замкнутого относительно подгрупп вида PN, где P — силовская p-подгруппа G и N extstyle G extstyle F. В теории классов конечных разрешимых групп известна теорема Гашюца-Фишера-Хартли [3] о том, что для любого класса Фиттинга F в каждой разрешимой группе G существуют F-инъекторы и любые два из них сопряжены.

Хорошо известно, что в разрешимой группе каждая F-подгруппа Фишера группы G является F-инъектором. Дарком [4] доказано, что существуют такие конечные разрешимые группы и классы Фиттинга, для которых F-подгруппы Фишера не сопряжены и не являются F-инъекторами (см. также [1, IX. 5.19]).

Основная цель настоящей работы — описать множества Фиттинга группы G, для которых в конечной группе ее множества F-инъекторов и F-подгрупп Фишера совпадают.

Напомним, что *классом Фиттинга* называется класс групп F, замкнутый относительно нормальных подгрупп и произведений нормальных F-подгрупп. Из определения класса Фиттинга следует, что каждая группа G обладает наибольшей нормальной F-подгруппой G_F , которая называется F-радикалом группы G. Если F – непустой класс Фиттинга, то подгруппа V группы G называется:

- а) F-максимальной, если $V \in F$ и U = V, при условии, что $V \le U \le G$ и $U \in F$;
- б) F-инъектором, если $V \cap H$ является F-максимальной подгруппой H для всякой субнормальной подгруппы H группы G [1].

Локализуя понятие класса Фиттинга, Шеметков [5] и в разрешимом случае Андерсон [6] определили понятие множества Фиттинга *группы G*. Непустое множество F подгрупп группы G называется множеством Фитинга G, если выполняются следующие условия:

- (1) если $T \le S \in F$, то $T \in F$;
- (2) если $S \in F$, $T \in F$, $S \subseteq ST$ и $T \subseteq ST$, то $ST \in F$;
- (3) если $S \in F$ и $x \in G$, то $S^x \in F$.

Напомним, что множество Фиттинга группы G называется множеством Фишера [1, с. 554], если из того, что $L \le G$, $K \le L \in F$ и H/K-p-подгруппа L/K для некоторого простого p, всегда следует, что $H \in F$.

Пусть \mathbb{P} — множество всех простых чисел, а π — некоторое подмножество множества \mathbb{P} . Дополнение к π во множестве \mathbb{P} обозначим через π' , то есть $\pi' = \mathbb{P} \backslash \pi$. Заметим, что *произведением* $F \circ H$ множества Фиттинга группы G и класса Фиттинга H [7] называется множество всех таких подгрупп H группы G, что $H/H_F \in H$, то есть

$$F \circ H = \{ H \leq G : H/H_F \in H \}.$$

Множество Фишера группы G называется π -насыщенным, если $F = F \circ E_{\pi'}$, где $E_{\pi'}$ – класс всех π' -групп.

Основной результат работы следующая

ТЕОРЕМА. Пусть $\emptyset \neq \pi \subseteq \mathbb{P}$ и $F - \pi$ -насыщенное множество Фишера π -разрешимой группы G. Тогда множество F-подгрупп Фишера G, содержащих холлову π' -подгруппу G совпадает с множеством F-инъекторов G.

Таким образом, в работе найден в частично разрешимой группе новый класс сопряженных F-подгрупп Фишера.

- 1. Doerk, K. Finite solvable groups / K. Doerk, T. Hawkes // Berlin-New York : Walter de Gruyter. 1992. 891 p.
- 2. Fischer, B. Klassen konjugierter Untergruppen in endlichen auflösbaren Gruppen / B. Fischer Habilitationsschrift, Universit at Frankfurt (M), 1966.
- Gaschütz, W. Injektoren endlicher auflösbarer Gruppen / W. Gaschütz, B. Fischer, B. Hartley // Math. Z. −1967. Bd 102, № 5. S. 337–339.
- 4. Dark, R. Some examples in the theory of injectors of finite soluble groups / R. Dark // Math. Z. 1972. Bd. 127. P. 145–156.
- 5. Шеметков, Л. А. О подгруппах π-разрешимых групп / Л. А. Шеметков // Конечные группы. 1975. С. 207–212.
- 6. Anderson, W. Injectors in finite soluble groups / W. Anderson // J. Algebra. − 1975. − № 36. − P. 333–338.
- 7. Yang, N. On F-injectors of Fitting set of a finite group / N. Yang, W. Guo, N. T. Vorob'ev // Comm. Algebra. 2018. Vol. 46, № 1. P. 217–229.