О КРАТНО σ-ЛОКАЛЬНЫХ КЛАССАХ ФИТТИНГА КОНЕЧНЫХ ГРУПП

Н.Н. Воробьев Витебск, ВГУ имени П.М. Машерова

Все рассматриваемые в работе группы являются конечными. Пусть $\sigma = \{\sigma_i \mid i \in I\}$ является некоторым разбиением множества всех простых чисел \mathbb{P} . Если n – целое число, символ $\sigma(n)$ обозначает множество $\{\sigma_i \mid \sigma_i \cap \pi(n)\}$; $\sigma(G) = \sigma(|G|)$ и $\sigma(F) = \bigcup_{G \in F} \sigma(G)$. Целые числа n и m называются σ -взаимно простыми, если $\sigma(n) \cap \sigma(m) = \emptyset$.

Следуя [1, 2] назовем некоторую функцию
$$f$$
 вида $f: \sigma \to \{$ классы Фиттинга $\}$ (1)

 σ -функцией и полагаем

 $LR_{\sigma}(f) = (G \mid G = 1 \text{ или } G \neq 1 \text{ и } G/O^{\sigma_i',\sigma_i}(G) \in f(\sigma_i)$ для всех $\sigma_i \in \sigma(G)$), где $O^{\sigma_i',\sigma_i}(G)$ – наименьшая σ_i -замкнутая нормальная подгруппа группы G.

Если класс Фиттинга f таков, что $f = LR_{\sigma}(f)$ для некоторой σ -функции f вида (1), то класс f назовем σ -локальным с σ -функцией Хартли f (более кратко, H_{σ} -функцией f). Следуя [1, 2] будем полагать, что всякий класс Фиттинга является 0-кратно σ -локальным. При n > 0 класс Фиттинга f назовем n-кратно σ -локальным, если либо f = (1) – класс всех единичных групп, либо $f = LR_{\sigma}(f)$, где все значения $f(\sigma_i)$ являются (n-1)-кратно σ -локальными классами Фиттинга для всех $\sigma_i \in \sigma(f)$. H_{σ} -функция называется внутренней, если $f(\sigma_i) \subseteq LR_{\sigma}(f)$ для всех i.

Теорема 1. Если $f = \bigcap_{j \in J} f_j$ и $f_j = LR_{\sigma}(f_j)$ для всех $j \in J$, тогда $f = LR_{\sigma}(f)$, где $f(\sigma_i) = \bigcap_{j \in J} f_j(\sigma_i)$ для всех $\sigma_i \in \sigma(f) = \bigcap_{j \in J} \sigma(f_j)$ и $f(\sigma_i) = \emptyset$ для всех $\sigma_i \in \sigma \setminus \sigma(f)$. Более того, если f_j — внутренняя H_{σ} -функция для всех $j \in J$, тогда f также является внутренней H_{σ} -функцией.

Пусть $f - \sigma$ -функция. Тогда символом $\operatorname{Supp}(f)$ обозначается множество всех σ_i таких, что $f(\sigma_i) \neq \emptyset$. σ -функция f называется l_{σ}^n -значной, если $f(\sigma_i)$ является n-кратно σ -локальным классом Фиттинга для всех $\sigma_i \in \operatorname{Supp}(f)$. Заметим, что для любого множества групп X, l_{σ}^n fit(X) является n-кратно σ -локальным классом Фиттинга. Будем называть данный класс Фиттинга n-кратно σ -локальным классом Фиттинга, порожденным X.

Для любых двух классов Фиттинга M и H будем полагать $M \vee_{\sigma}^{n} H = l_{\sigma}^{n}$ fit($M \cup H$). Если m и h являются l_{σ}^{n} -значными σ -функциями, тогда $m \vee_{\sigma}^{\sigma} h$ является σ -функцией такой, что $(m \vee_{\sigma}^{n} h)(\sigma_{i}) = m(\sigma_{i}) \vee_{\sigma}^{n} h(\sigma_{i})$ для всех i; мы используем также $m \cap h$ для обозначения σ -функции такой, что $(m \cap h)(\sigma_{i}) = m(\sigma_{i}) \cap h(\sigma_{i})$ для всех i.

Теорема 2. Пусть $f_j = LR_{\sigma}(f_j)$, где f_j является внутренней l_{σ}^{n-1} -значной H_{σ} -функцией f_j , j = 1, 2. Тогда $f = f_1 \bigvee_{\sigma}^{n} f_2 = LR_{\sigma}(f)$, где $f = f_1 \bigvee_{\sigma}^{n-1} f_2$ является внутренней H_{σ} -функцией.

- 1. Chi, Zhang. On one application of the theory of n-multiply σ-local formations of finite groups / Zhang Chi, V.G. Safonov, A.N. Skiba // Problems of Physics, Mathematics and Technics. 2018. № 2 (35). P. 85–88.
- 2. Скиба, А.Н. Кратно ω -локальные формации и классы Фиттинга конечных групп / А.Н. Скиба, Л.А. Шеметков // Матем. труды. -1999. T. 2, № 2. C. 114-147.

КЛАССЫ ФИТТИНГА И ФОРМАЦИИ ЛОКЕТТА

С.Н. Воробьев, Н.Т. Воробьев Витебск, ВГУ имени П.М. Машерова

В работе рассматриваются только конечные группы. В определениях и обозначениях мы следуем [1]. При построении структурной теории классов Фиттинга ключевым объектом в исследованиях является оператор Локетта «*» [2]. Напомним, что оператор «*» сопоставляет каждому непустому классу Фиттинга F наименьший из классов Фиттинга F^* , содержащий F такой, что для любых групп G и H F^* -радикал их прямого произведения совпадает с прямым произведением F^* -радикалов этих групп. Класс Фиттинга F называют *классом Локетта* [2], если $F = F^*$.

Дуализируя оператор «*» Дёрк и Хоукс [3] в теории формаций групп определяют оператор « 0 ». Каждой непустой формации F оператор « 0 » сопоставляет наименьшую формацию F 0 , содержащую F такую, что для любых групп G и H F 0 -корадикал прямого произведения G и H