Amara (s. str.) tibialis (Paykull, 1798). Сосняк мшистый, 14-26.05.2017, 1 экз.; просека под газопровод, 14-26.05.2017, 1 экз.

Amara (s. str.) littorea C.G. Thomson, 1857. Просека под газопровод, 14.-26.05.2017, 1 экз.

Harpalus (s. str.) anxius (Duftschmid, 1812). Просека под газопровод, 14-26.05.2017, 1 экз.; 26.05-06.06.2017, 1 экз.

Harpalus (s. str.) autumnalis (Duftschmid, 1812). Сосняк брусничный, 14-26.05.2017, 1 экз.; просека под газопровод, 15.08.2017, 3 экз., 16.09.2017, 1 экз.; сосняк лишайниковый, 15.08.2017, 2 экз.

Harpalus (Semiophonus) signaticornis (Duftschmid, 1812). Сосняк мшистый, 14-26.05.2017, 1 экз.; просека под газопровод, 14-26.05.2017, 1 экз.

Harpalus (s. str.) solitaris Dejean, 1829. Просека под газопровод, 25.04-14.05.2017, 1 экз., 14-26.05.2017, 7 экз., 26.05-06.06.2017, 14 экз., 04.07.2017, 6 экз., 12-13.07.2017, 3 экз., 15.08.2017, 2 экз.

Сем. Стафилиниды (Staphylinidae)

Platydracus (s. str.) stercorarius stercorarius (Olivier, 1795). Просека под газопровод, 16.09.2017, 1 экз.

Заключение. В результате исследований выявлено 13 редких видов жесткокрылых из 2 семейств, из которых 1 вид — *Carabus coriaceus* внесен в новое издание Красной книги Республики Беларусь. В сосняке нарушенном не было выявлено редких и охраняемых видов жесткокрылых.

БИОХИМИЧЕСКИЕ И АНТРОПОМЕТРИЧЕСКИЕ ОСОБЕННОСТИ ВЫСОКОКВАЛИФИЦИРОВАННЫХ СПОРТСМЕНОВ-МУЖЧИН СКОРОСТНО-СИЛОВЫХ ВИДОВ СПОРТА И ЕДИНОБОРСТВ

Н.А. Степанова, М. Алтани Витебск, ВГУ имени П.М. Машерова

В процессе спортивной подготовки и оценки здоровья спортсменов применяется комплексный контроль, в систему которого входят подсистемы биохимического и антропометрического контроля.

Цель исследования – выявление особенностей биохимических и антропометрических показателей высококвалифицированных спортсменов-мужчин скоростно-силовых видов спорта и единоборств.

Материал и методы. Под наблюдением с 2011 по 2017 год находились спортсмены. Предметом исследования являлись 18 биохимических показателей сыворотки крови (биохимический анализ крови, в нашем исследовании кроме альфа-амилазы и щелочной фосфатазы), 16 морфологических показателей состава тела человека (морфометрия), 19 показателей функционально-физического состояния человека, определяемых с помощью системы комплексного компьютерного исследования физического состояния спортсменов «Омега-С». Показатели сводились в компьютерную базу данных (644 спортсмена). В базе выделены две группы спортсменов. В одну группу вошли спортсмены скоростно-силовых видов спорта (далее ССВ) – таких как легкая атлетика, гребля, коньки, биатлон и пр.; другая группа – спортсмены, занимающиеся различными видами единоборств (далее спорт единоборств «СЕ»). Все спортсмены имели квалификацию кандидата в мастера спорта и мастера спорта. Результаты обрабатывались с помощью программы Ехсеl. Достоверными принимали отличия со значимостью 95% и более (р < 0,05).

Результаты и их обсуждение. Оказалось, что показатели фукционально-физического состояния спортсменов двух групп статистически не отличались. Данные статистически значимых биохимических и антропометрических показателей представлены в таблице 1. Кроме этого, представлены некоторые не отличающиеся показатели, используемые в текущем мониторинге состояния спортсменов. Из таблицы следует, что возраст спортсменов двух групп не отличается; спортсмены ССВ в среднем оказались выше, что сказалось на индексе массы тела (ИМТ), последний у них ниже. Реальные массы спортсменов в двух группах выше идеальных, в группе СЕ на 2,4% выше, чем у спортсменов ССВ. Из всех биохимических показателей статистически значимыми оказались отличия по содержанию мочевины, билирубина, мочевой ки-

слоты – их больше у спортсменов в группе СЕ, а также электролитные данные – содержание калия и железа сывороточного, которых тоже в этой группе больше. Активность ферментов не отличается, однако их показатели явились предметом более пристального внимания, чем другие биохимические показатели, вследствие того, что они входят в программу мониторинга подготовки спортсменов и характеризуют возможные повреждения клеток сердечной и скелетных мышц, а также повреждения клеток печени.

Таблица 1 – Исследуемые показатели

Показатели, единицы	Единоборства		Скоростно-сил виды спорт	Данные по тесту	
	X±Sx n		X±Sx n		p
Возраст, лет	19,3±0,57	101	20,0±0,41	87	0,31
Рост, см	177,1±0,77	101	182,5±0,65	87	0,0000001
Вес, кг	74,0±1,55	101	75,4±1,23	87	0,66
ИМТ, кг/м ²	23,4±0,37	101	22,3±0,32		0,0262
Мочевина, 1,7-8,3 моль/л	6,02±0,154	98	5,04±0,14	86	0,00001
Креатинин,	0,10±0,002	98	0,1±0,02	86	0,125
0,06-0,12 ммоль/л					
Билирубин общий,	20,4±1,13	98	15,9±0,97	87	0,003
2-20 мкмоль/л)					
Мочевая кислота,	$0,32\pm0,006$	98	$0,30\pm0,005$	87	0,010
0,2-0,42 ммоль/л					
АлАТ, до 40 Ед/л	25,7±1,26	98	25,5±1,14	86	0,610
АсАТ, до 40 Ед/л	34,3±1,80	98	33,5±2,81	86	0,914
КФК, 25-200 ед.	451,2±68,75	92	527,9±81,03	85	0,471
Коэффиент де Ритиса	1,33±0,06	77	1,31±0,072	54	0,454
АсАТ / АлАТ					
КФК / АсАТ	13,2±0,66	77	15,76±0,825	53	0,288
Железо сывороточное	14,5±1,23	54	19,5±1,00	61	0,002
9,5-30 ммоль/л					
Калий, 3,5-5,5 ммоль/л	4,6±0,08	70	4,35±0,080	78	0,036
Идеальная масса тела, кг	72,0±0,98	54	75,1±0,72	33	0,012
% реальной массы от идеальной	102,8		100,4		
массы тела					
Безжировая масса (мышцы), %	81,4±0,69	54	85,4±0,95	33	0,001
Масса жира, %	18,6±0,67	54	15,6±0,95	33	0,001

Вышеуказанные показатели были проанализированы на предмет отклонений от принятых в исследовании границ и представлены в таблице 2. Из таблицы следует, что количество отклонений по ИМТ одинаково в двух группах, но 21% спортсменов имеют отклонения больше максимального значения. Это факт говорит о том, что необходимо сопоставлять ИМТ с составом тела. Обращает на себя внимание большой процент отклонений в двух группах в сторону увеличения билирубина, причем, в группе СЕ содержание билирубина выше максимального почти у половины спортсменов и в 2 раза больше, чем в группе ССВ.

Таблица 2 – Данные по проценту отклонений от принятых в исследовании значений; минимальные и максимальные значения биохимических показателей сыворотки крови спортсменов-мужчин

Показатани анишини	Скоростно-силовые виды спорта				Единоборства			
Показатели, единицы	<min,< td=""><td>>max</td><td>min</td><td>max</td><td><min< td=""><td>>max</td><td>min</td><td>max</td></min<></td></min,<>	>max	min	max	<min< td=""><td>>max</td><td>min</td><td>max</td></min<>	>max	min	max
ИМТ,	6,9	20,7		26,6	6,9	20,8	16,7	37,8
19-25 кг/м ²								
Мочевина, 1,7-8,3 ммоль/л	0	3,5	2,8	8,8	0	8,1	3,8	10,1
Креатинин,	0	2,3	0,06	0,15	0	5,1	0,07	0,2
0,06-0,12 ммоль/л								
Билирубин общий,	0	21	6,4	47,6	0	44,8	6,5	57,8
(2-20 мкмоль/л)								

Мочевая кислота,	0	1,1	0,2	0,44	0	5,1	0,21	0,46
0,2-0,42 ммоль/л								
АлАТ, 20-40 Ед/л	43,7	10,3	10	80	34,7	8	12	107
АсАТ, 20-40 Ед/л	19,5	18,4	13	204	6,1	19,4	14	129
КФК, 150-200 ед.	22,1	60	56	4767	10,9	73,9	59	614 6
Железо сыв-ное 9,5-30 ммоль/л)	6,6	9,8	5,4	44,2	22,2	3,7	0,8	37,4
Калий, 3,5-5,5 ммоль/л	9,0	5,1	1	5,8	4,2	7,1	3,3	5,8

Примечание: «<min», «>max» – % отклонений; «min», «max» – минимальное и максимальное значение показателей в группах.

Также наблюдается большой процент отклонений в сторону увеличения активности КФК и в сторону уменьшения активности АлАТ в двух группах, что может влиять на увеличение коэффициента де Ритиса, и указывать на повреждение сердечной мышцы. По литературным данным увеличение последнего при уменьшении активности АлАТ менее 20Е наблюдалось также у перетренированных спортсменов [1].

Анализ антропометрических показателей (Таблица 3) показывает, что в двух группах наблюдается превышение жировой массы тела у 91 и 98 % спортсменов, нелостаток безжировой массы у 85% и 67 % в группе ССВ и СЕ соответственно

спортсменов, недостаток безжировой массы у 85% и 67 % в группе ССВ и СЕ соответственно. Избыток общей воды наблюдается у 85,5 %, спортсменов в группе СЕ, недостаток ее у70% в группе ССВ.

Для выбора в качестве сравнения использования в мониторинге состояния спортсменов ИМТ или массы жира установлены коэффициенты корреляции (таблица 4) между показателями состава тела.

Из нее следует, что корреляционная связь в группе ССВ более тесная, приблизительно равная. В группе СЕ корреляционные связи более тесные при замене массы тела на ИМТ.

Таблица 3 – Особенности антропометрических показателей спортсменов

	Скоростно-силовые виды с	Единоборства (n=54)		
	Количество человек	%	Количество человек	%
Недостаток общей массы	23	70	9	17
Избыток общей массы	10	30	45	83
Недостаток безжировой массы	28	85	36	67
Избыток безжировой массы	5	15	17	31,5
Недостаток жировой массы	2	6	1	2
Избыток жировой массы	30	91	53	98
Недостаток общей воды	23	70	8	15
Избыток общей воды	10	30	44	81,5

Таблица 4 – Коэффициенты корреляции

Сполучно одина таковолоти	CO	СВ	CE		
Сравниваемые показатели	r	$r^2(\%)$	r	$r^2(\%)$	
Масса тела – безжировая масса	-0,865	74%	-0,5076	26	
Масса тела – масса жира	0,864	75	0,510	26	
ИМТ – безжировая масса	-0,894	80	-0,6948	48	
ИМТ – масса жира	0,894	80	0,6964	45,5	

Примечание. Все отличия статистически значимы (p<0,05)

Заключение. Выявлены биохимические особенности спортсменов двух групп, проявившиеся в различном содержании мочевины, билирубина, мочевой кислоты, содержания калия и железа: их содержание больше в группе спортсменов скоростно-силовых видов спорта. Различия проявились также в больших процентах отклонения от максимальных значений билирубина и активности КФК в группе спортсменов единоборств, и минимальных значений активности аланиламинотранферазы в большей степени у спортсменов скоростно-силовых видов. Антро-

пометрические особенности проявляются в превышении жировой массы тела почти у всех спортсменов двух групп и различном соотношении избытка и недостатка воды в двух группах. Корреляционная связь между показателями состава тела в группе ССВ боле тесная, чем в группе СЕ. Таким образом, при выборе морфометрических показателей следует учитывать не только состав тела, но и вид спорта.

1. Таймазов, В. А. Синдром перетренированности у спортсменов: эндогенная интоксикация и факторы врожденного иммунитета / В.А. Таймазов, И.А. Афанасьева // Ученые записки университета имени П.Ф. Лесгафта .— 12 (82) 2011, 31 декабря 2011, С. 24-30. Электронный ресурс. Режим доступа: http://bmsi.ru/doc/7e2ece8b-09f3-4528-b8ac-55e5c50a251b. Дата доступа: 29 октября 2015.

ТАКСОНОМИЧЕСКИЙ СОСТАВ И ОСОБЕННОСТИ ЭКОЛОГИИ СТРЕКОЗ (INSECTA, ODONATA) ВЕРХОВЫХ БОЛОТ БЕЛОРУССКОГО ПООЗЕРЬЯ

Г.Г. Сушко, О.И. Шатарнова Витебск, ВГУ имени П.М. Машерова

Верховые болота характеризуются своеобразным сочетанием экологических факторов (высокая влажность, низкая минерализация воды и почвы (торфа) и их сильнокислая реакция, специфический комплекс растительности и др.). Их градиент достаточно плавный и соответствует горизонтальной структуре, которая связана с пространственными различиями торфяной залежи. Кроме того, верховые болота содержат водные объекты различных типов: озера и соединяющие их протоки, озерки и мочажины различных размеров. Изучение их биоразнообразия имеет важное значение, как для инвентаризации, так и для познания эволюционных аспектов и экологических механизмов функционирования. Стрекозы, вследствие многочисленности, высокого видового богатства и широкой экологической пластичности являются одним из наиболее удобных объектов для таких исследований. К настоящему времени состав и структура их комплексов на верховых болотах изучены не достаточно хорошо.

В связи с этим цель нашей работы – установить таксономический состав и выяснить основные экологические особенности стрекоз верховых болот Белорусского Поозерья.

Материал и методы. Сборы материала осуществлялись на верховых болотах Витебской области с использованием стандартных гидробиологических и энтомологических методик в озерах, озерках и мочажинах.

Результаты и их обсуждение. Выявлено 35 видов стрекоз из 18 родов, 7 семейств, 5 надсемейств и 2 подотрядов (таблица 1).

Наибольшим количеством видов представлены семейства Libellulidae (12 видов -34,29% от их общего числа), Coenagrionidae (9 видов -25,71%), Cordulidae (5 видов -14,29%). Из родов наиболее представительными оказались *Sympetrum* и *Leucorrhinia* - по 4 вида (таблица 1).

По биотопической приуроченности личинок большинство стрекоз составляют реофилы (19 видов – 54,29%), которым немного уступают стагнофилы (15 видов – 42,86%). Только один вид (2,66%) является реобионтом, *Calopteryx splendens*, имаго которого зарегистрированы на болотах, вероятно, вследствие способности к активному полету.

В числе выявленных видов -2 (5,71%) обитают в Белорусском Поозерье только на верховых болотах (Aeschna subarctica и Somatochlora arctica) и 7 (20,00%) предпочетают их среди других биоценозов (Leucorrhinia dubia, L. rubicunda, Nehalennia speciosa, Sympecma annulata, Lestes sponsa, Aeschna juncea, Sympetrum danae).

Таблица 1 – Таксономический состав стрекоз (Insecta, Odonata) верховых болот Белорусского Поозерья

Подотряд	Надсемейство	Семейство	Количество родов	Доля родов от общего числа (%)	Количество видов	Доля видов от общего числа (%)
	Calopterygoidea	Calopterygidae	1	5,56	1	2,86
Zigoptera	Lestoidea	Lestidae	2	11,11	3	8,57
	Coenagrionoidea					
		Coenagrionidae	5	27,78	9	25,71