Для произвольной n-кратно ω -насыщенной формации F через $L_n^\omega(\mathsf{F})$ обозначается решетка всех n-кратно ω -насыщенных подформаций из F .

Пусть X — произвольная непустая совокупность групп. Пересечение всех формаций, содержащих X, обозначают formX и называют формацией, порожденной X [1]. Подформация M называется дополняемой в F [4], если M дополняема в решетке подформаций формации, т. е. если в F имеется такая подформация H, что $M \cap H = (1)$, $F = form(M \cup H)$.

Доказана следующая

Теорема. Пусть $\mathsf{F} - n$ -кратно ω -насыщенная формация. Тогда, если формация N_p дополняема в решетке $L_n^\omega(\mathsf{F})$ для каждого $p \in \pi(\mathsf{F})$, то $\mathsf{F} \subseteq \mathsf{N}$.

Список литературы

- 1. Скиба, А.Н. Алгебра формаций / А.Н. Скиба. Минск: Беларуская навука, 1997. 240 с.
- 2. Скиба, А.Н. Кратно ω-локальные формации и классы Фиттинга конечных групп / А.Н. Скиба, Л.А. Шеметков // Матем. труды, 1999. − Т. 2, № 2. − С. 114–147.
- 3. Скиба, А.Н. Характеризация конечных разрешимых групп заданной нильпотентной длины / А.Н. Скиба // Вопросы алгебры. Минск: Университетское, 1987. Вып. 3. С. 21–31.
- 4. Скиба, А.Н. О насыщенных формациях с дополняемыми насыщенными подформациями /А.Н. Скиба // Изв. вузов. Сер. Математика. 1994. №10. С. 75—80.

О НЕКОТОРЫХ ПРОБЛЕМАХ ТЕОРИИ РАДИКАЛОВ И РАДИКАЛЬНЫХ КЛАССОВ КОНЕЧНЫХ ГРУПП

Н.Т. Воробьев Витебск, УО «ВГУ им. П.М. Машерова»

Классом Фиттинга или радикальным классом [1] называют класс групп F, для которого выполняются следующие условия:

- (a) Если $G \in \mathsf{F}$ и $N \stackrel{\triangleleft}{=} G$, то $N \in \mathsf{F}$;
- (б) Если G = MN, $M \in \mathsf{F}$, $N \in \mathsf{F}$ и M, $N \stackrel{\triangleleft}{=} G$, то $G \in \mathsf{F}$.

Из условия (б) следует, что для любого непустого класса Фиттинга F и любой группы G существует наибольшая нормальная подгруппа, принадлежащая F . Ее называют F -радикалом группы G и обозначают G_F .

Основная цель настоящей работы — определить ряд открытых вопросов теории радикалов и радикальных классов, связанных с изучением структуры канонических подгрупп и их классов.

1. Проблемы существования и сопряженности F-инъекторов. Напомним, что если F – класс Фиттинга, то F-инъектором группы G называют такую подгруппу V из G, для которой $V \cap N$ является максимальной из подгрупп G, принадлежащих F, для любой субнормальной подгруппы N группы G.

В теории конечных разрешимых групп хорошо известным результатом является следующее обобщение фундаментальных теорем Силова и Холла, которое получено Гашюцом, Фишером и Хартли [2]: для любого класса Фиттинга F в лю-

бой конечной разрешимой группе G существует единственный класс сопряженных F-инъекторов.

Заметим, что теорема Гашюца-Фишера-Хартли неверна в общем случае, когда класс Фиттинга $\mathsf F$ и группа G неразрешимы. В связи с этим возникает следующая

Проблема 1.1. Пусть F разрешимый класс Фиттинга и G произвольная конечная группа. Верно ли, что в G существуют F-инъекторы?

Указанная проблема положительно решена для следующих случаев локального класса Фиттинга F: класса N всех нильпотентных групп, класса S_{π} всех разрешимых π -групп.

Это позволяет сформулировать следующий ослабленный вариант проблемы 1.1.

Проблема 1.2. Пусть F разрешимый локальный класс Фиттинга. Верно ли, что в любой конечной группе G существуют F-инъекторы?

2. Проблемы описания структуры классов Фиттинга. В 1974 году Локеттом [3] была выдвинута гипотеза о том, что каждый разрешимый класс Фиттинга F определяется как пересечение $F*\cap X$ классов Фиттинга F* и X, где F* наименьший из классов Фиттинга, содержащих F такой, что F*-радикал прямого произведения групп G и H совпадает с прямым произведением F*-радикалов этих групп, и X – нормальный класс Фиттинга.

Данная гипотеза была подтверждена автором [4] для локальных классов Фитинга. В связи с этим актуальна

Проблема 2.1. Описать нелокальные классы Фиттинга F, для которых справедлива гипотеза Локетта.

Отметим, что если локальные классы Фитинга F и H удовлетворяют гипотезе Локетта, то их пересечение также класс, для которого справедлива эта гипотеза. В связи с этим возникает

Проблема 2.2. Пусть F и H классы Фитинга, для которых справедлива гипотеза Локетта. Верно ли, что гипотеза Локетта верна для пересечения классов Фитинга $F \cap H$?

Список литературы

- 1. Doerk, K. Finite Soluble Groups / K. Doerk, T. Hawkes. Berlin-New York: Walter de Gruyter, 1992. 891 p.
- 2. Fischer, B. Injectoren endlicher auflösbarer Gruppen / B. Fischer, W. Gaschütz, B. Hartley // Math.Z. − 1967. − Bd. 102, №5. − S. 337–339.
- 3. Lockett, P. The Fitting class F* / P. Lockett // Math. Z. − 1974. − Bd. 137, №2. − S. 131–136.
- 4. Воробьев, Н.Т. О радикальных классах конечных групп с условием Локетта / Н.Т. Воробьев // Матем. заметки. 1988. Т.43, вып.2. С. 161-168.