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On the Distributivity of the Lattice of Solvable Totally Local Fitting Classes
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ABSTRACT. It is proved that the lattice of all solvable totally local Fitting classes is algebraic and distributive.
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All groups under consideration are finite. Recall that functions of the form f: P — {formations} are
called formation functions [1] or satellites [2]. If a class of groups § is of the form

§=mn( N &rMf),

pEn(F)

where f is a satellite, then we say that § is a local formation with satellite f and write § = LF(f). Here
7(§) is the set of all prime divisors of the orders of the groups in §, and the symbols 9, and &, stand
for the class of all p-groups and the class of all p’-groups, respectively.

Functions of the form f: P — {Fitting classes} are called Hartley functions or briefly H -functions (2].
If for a class of groups § we have

§=6.5n( ) F@MSy),

pen(F)

where f is an H-function, then we say that § is a local Fitting class with H-function f and write
§ =LR(f).

When surveying the best-known specific classes of groups, it can readily be discovered that these classes
can be defined by means of functions whose nonempty values are some local classes themselves. This fact
led to the following natural construction [3]: each formation is assumed to be 0-fold local and, for n > 1,
a formation § is said to be n-fold local if § = LF(f), where all the nonempty values of the satellite f
are (n—1)-fold local. A formation is said to be totally local if it is n-fold local for all positive integers n.
The n-fold local and totally local Fitting classes are defined in a similar way. We can readily show that the
class of solvable totally local formations coincides with the class of so-called primitive saturated formations
introduced by Hawkes in [4]. Multiply local classes have applications in the solution of many problems in
the theory of classes (see, e.g., [5-10]).

The totally local classes are the limit case of n-fold local classes and have specific properties. In
particular, we note that, for any nonnegative integer n, the lattices of all n-fold local formations, of the
n-fold local hereditary formations, of the n-fold local normally hereditary formations, etc., are modular,
but all these formations are not distributive even in the class of solvable groups G (see [5, Chap. 2] and [6,
Chap. 4]). As far as the totally local formations are concerned, it is not known at present whether the
lattice of all totally local 7-closed formations is at least modular for at least one nontrivial subgroup
functor 7 [6, Question 4.2.14]. At the same time, in [5] it was announced that the lattice of all solvable
totally local formations is distributive. In the present paper we prove that the lattice of all solvable totally
local Fitting classes is algebraic and distributive, and each of its elements that differs from (1) and &
is not complementable. In the course of proving this result, we clarify some general properties of the
generation operator V. On the other hand, as one of the consequences, we give here a complete proof
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of the distributivity of the lattice of all solvable totally local formations; another scheme of such a proof
was discussed in the monograph [6].

Let us recall some definitions [2] related to local Fitting classes. By the symbol FP(G) we denote the
subgroup OP(O? (G)). By 1 we denote the lattice of all totally local Fitting classes. An H-function f
is said to be I -valued [6] if each nonempty value of f belongs to the lattice [°°. Let {fi(p) |7 € I} be
an arbitrary collection of [*°-valued H -functions. For any p € P we set

(N £)) =) fi®.

i€l el

An H -function [;; fi is called the intersection of the H-functions f;. If a Fitting class § admits at
least one [*-valued H -function, then the intersection of all such H -functions for the class § is called the
minimal 1 -valued H -function of the class §. '

Let X be an arbitrary nonempty family of groups. The intersection of all totally local Fitting classes
containing X is denoted by [ fitX and is called the totally local Fitting class generated by X [2]. If
X = {G}, then we write [™ fit G instead of [® fit{G}. Each Fitting class of this form is called a singly
generated totally local Fitting class [2].

We need the following special case of Lemma 21 in {2].

Lemma 1. If §=I1°fitX and if f is the minimal [* -valued H -function for the class §, then
flp) =17 6it(FP(G) | G € %)

for all p € w(X), and f(p) =2 for any p € P\ n(X).

Proof. Let ¢t be an H -function such that #(p) = [* fit(FP(G) | G € X) for any p € w(X) and t(p) = @
for any p € P\ n(X). Let us show that ¢t = f. Let 9 = LR(¢). Then it is clear that X C 9. Hence,
§ C . Let fi be an arbitrary [*°-valued H -function of the class §. Then, since X C §, it follows that
(FP(G) | G € X) C fi(p) for any p € P. Therefore, t(p) C fi(p). Consequently, MM C §F. Hence, M = F
and t = f. This proves the lemma. O

Let {3; | ¢ € I} be an arbitrary family of Fitting classes in {®°. In this case, by V°(F; | i € I) we
denote [6] the least upper bound of {F; | € I} in ™ and by V™(f; | i € I) the H-function f such that
f(p) is the least upper bound of {fi(p) | i € I} in I if ;¢ fi(p) # @, and f(p) = & otherwise.

Lemma 2. Let f; be the minimal [ -valued H -function for the Fitting class §;, i € I. Then the
function V°(f; | i € I) is the minimal [ -valued H -function for the Fitting class § =V>®(F; |i € I).

Proof. Let
= ’R'(U $:) = U n(8:) = =(3),

i€l iel
let f=V>(f;|i€I),and let h be the minimal [*-valued H -function for the Fitting class §. Let us
show that h = f.

Let p € P\ w. In this case, for any ¢ € I, we have h(p) =2 and f;(p) = @. Hence, f(p) =2.
Let p € 7. In this case, there is an ¢ € I such that f;(p) # @. By Lemma 1 we have

we) = 1= (F*(0) | 6 € U)) = 1= (U= 8((#7(©) | ¢ € 59)) )
iel i€l
==t (U £@)) = (v=(f: 1i € D) @) = £ (o).
iel

This proves the lemma. [

An H-function f is said to be inner if f(p) C LR(f) for any p € P. In what follows, we need the
following lemma, which is a special case of the result obtained by Vorob’ev in [11].
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Lemma 3. For any totally local Fitting class $), the class HN, totally local.
Lemma 4 [2, Lemma 23]. Let § = LR(f). In this case, if OP(G) € f(p)NF, then GEF.

To any Fitting class we can assign the smallest (by inclusion) Fitting class §* [12] that contains § and
satisfies (G x H)z~ = G- x Hy- for any groups G and H. A Fitting class § is called a Lockett class if
F=F".

Lemma 5. If {§; = LR(f;) |7 € I} is a set of totally local Fitting classes, where f; is an inner [*° -

valued H -function, then
Ve(Si | i € I) = LR(V®(fi | t € I)).

Proof. Let §=V>®(F;|i€I),let M=LR(V>®(f;|i€I)), and let h; be the minimal [*°-valued H -
function for the class §;. Then, by Lemma 2, h = V®°(h; | i € I) is the minimal [*®-valued H -function
for the class §. Since h; < f;, it follows that, for any p € P, the following inclusion holds:

=it ) € 18| £i(0)).

i€l iel

Hence, § C 9.

Now let us prove the converse inclusion. Let ¢; be an H-function for §; such that ¢;(p) = h;(p)N, for
any p € P. By Lemma 3, this H-function is {*°-valued. Let us show that f; <¢;.

Assume that f; € t;. Then there is a prime number p such that f;(p) € t;(p). Let G be a group
in fi(p)\ti(p). Let I' = G1Z, = [K|Z,, where Z, is a group of order p and K is the base of the
regular wreath product I'. Since each local Fitting class is a Lockett class (13] and G ¢ ¢;(p), it follows
from [1, Chap. X, Proposition 2.1 a)] that I'y,(,) = K1, where K; is the base of the regular wreath product
I'y = Gy,(p) ! Zp. 1t follows from the properties of the wreath products (see, e.g., [1, Chap. A, 18.2 d)])
that

F/Ft;(p) = F/K]_ o~ (G/Gtz(p)) I Zp.

Hence, the order of the group I'/T';,(,) is divisible by p.
Since G € f;{p), it follows that K € f;(p). Therefore, K C I'f,(p)- Since I'/K ~ Z, € 9, it follows
that
F/K/Ffi(p)/K o~ F/Ffi(p) € ‘ﬁp.

Hence, by Lemma 4 we obtain I' € f;(p)91, C §; = LR(f;) = LR(%;), and therefore

e, ;N ( ﬂ ti(‘l)®q’)

qeT(F)

and, in particular, I' € t;(p)&,s for any p € 7(§). Consequently, I'/T,(,) € &, . A contradiction.
Thus, f; <t;. Hence, f =V>®(f; |i € I) < V™(t; | i € ), ie., for any p € P we have the inclusion

fle)=Vv=(filp) |i € I) S V=(t:(p) | i € I) = V= (hi(p)Mp | : € I).

Since h;(p)M, C (V*®(hi(p) | i € I))M,, it follows that

e (| @), ) €1 (v (u(p) | € D) = (v(hilp) | € D),
iel

for any p € P. However, § = LR(t), where ¢ is an [°°-valued H -function such that
t(p) = (V= (hilp) |1 € 1)),

for any p € P. Hence, f <t. Thus, MM C §F. Therefore, M = §F. This proves the lemma. [
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Lemma 6. Let A € GNw(F1,...,8m), where w(z1,...,Tn) s a term of signature {N, vV}, and let
81y ..., 5m be some solvable totally local Fitting classes. Then there are groups Ay,...,An (A; € ;)
such that A € w(I® fitA,,...,I°fitA,).

Proof. Let us prove by induction on the number r of occurrences of symbols belonging to {n, v}
in the term w that there exist groups 4; € §; (i =1,...,m) such that

Acw(™®fitA,...,I°fitA,).

For r = 0 we obviously have A € [*fit A. Let us prove by induction on the nilpotent length of the
group A that the assertion holds for r = 1.

Let A € §1V®F2 =1 fit(F1UF2) and 7w(A) = {p1,..-,pk}. For [(A) =1 wehave A = P  x---x Py,
where P; is a Sylow p;-subgroup of the group A. It is clear that 7(A) C #(F:1)Un(F2). Let py,...,p; €
1!'(31) and Pi+1y--+ 3Pk € W(Sg). Then A; = P, X -+- X R, € &1 and Ay = R‘H‘l X+ X Py € §2.
Obviously,

A=A; x Ay € (I®fit A)) V™ (I*° fit A5).

We assume now that [(A) > 1. Let the desired assertion hold for all solvable groups whose nilpotent
length is less than that of the group A. By Lemmas 1 and 2, for an arbitrary p; € 7(A) we have

FP(A) € filp) V™ falp:) = (T Bit(FP(G) | G € §1)) V™ (P Bt(F™(G) | G € 32)),

where f; is the minimal {°°-valued H -function for the Fitting class §;, j = 1, 2. Since [(F?:(4)) < I(4),
it follows by the induction assumption that there are groups A;, € fi(p;) and A;, € f2(p;) for which we
have FPi(A) € (I°fit A;,) V™ (I fit 4;,).

Let B;, = A; 1Z,, and B;, = A;,1Z,, , where Z,,, is a cyclic group of order p;, and K is the base of the
regular wreath product B;, . Since A;, € f1(p;), it follows by Lemma 4 that we have B;, € fi(p;)N,, C F1-
Similarly, B;, € §2.

Hence, Ay = By, X -+ X By, €% and Az = By, X -+- X By, € Fa. Let us show that

A€§ = (I%ft A;) V™ (I°° fit Ap).

Let h be the minimal {*-valued H-function for the class §, and let f be an [®-valued H -function for
the class § such that f(p) = h(p)N, forany p € P. Let 2 € {1,...,t}. Let us show that FP:(A) € f(p;).
First we prove that A; , A, € f(p;). Assume that A;, ¢ f(p;). In this case, since f(p;) is a Lockett
class [13], it follows from [1, Chap. X, property 2.1 a)] that (B;,)f(,,) = K1, where K; is the base of
the regular wreath product (A;,)s(,) 1 Zp, - By the properties of wreath products (see, e.g., [1, Chap. A,
18.2 d)]) we have

Bi, [(Biy) j(mi) = Biy [ K1 2 (Aiy [(Air) £(pi)) 1 Zpi-

Hence, p; is a divisor of the order of B;, /(B;, ) £(p;) -
On the other hand, since B;, € §, it follows that

Bi, € &xz N ( N f(p)%')

pER(F)

and, in particular, B;, € f(p;)®,;. Hence, B;, /(B:,)sp:) € Gp; - A contradiction. Thus, we have
Ai, € f(pi). Similarly, A;, € f(p;). Therefore, I®fit(A;,, A;,) € f(p;). Clearly I®fit(4;,, 4;,) =
(I°fit A;, ) Vo (I fit A;,). Thus, FPi(A) € f(p;).-

If A€ 51 AP F2 = F1NF2, then A € (I* fit A) A= (I*°fit A). This completes the proof of the theorem
forr=1.

Let a term w have r > 1 occurrences of symbols belonging to {N, v}, and let the lemma hold for
terms with lesser number of occurrences. Assume that w is of the form

w1($i17 cery mia)AWZ(z.‘il 1oty zjb)’



where A € {N,v*®} and {z;,,..., %, }U{zj, -~ 25} ={Z1, ..., Tm}.

By $: we denote the Fitting class w;(§s,,...,i,) and by 9 the Fitting class wa(Fj,,---,F5)-
Then, as was proved above, there are groups A; € $; and Az € $H2 such that A € [*®fit A; Al®fit As.
Since the number of operations in the term w; is less than r, it follows by the induction assumption that
there are groups B; € §i,, ..., Bs € §i, such that 4 € w (I®fit By, ..., fit B,). Similarly, there are
groups Ci € §j,,...,Cp € §j, such that Ay € wa(I®fitCy, ..., I®° fit Cy).

Let @4, ..., %, € {2j,..., x5} and let {z;,,...,2;,} N{z;,,...,2;} = 2. Assume that
D — By fork<t+1,
* 7 By x Cq, where z;, = z;_ for some g € {1,...,b} provided that k >t + 1.

Let Dy, = Ci if zj, & {Ziy,..-,%i,}- By DM, we denote the class [* fit D;,, where p=1,...,qa, and
by X. the class {*fit D;_ , where c=1,...,b.
Thus,

Ay Ewl(l“ﬁtBl, ...,looﬁtBa) gwl(l°° ﬁtDil,...,lwﬁtDia) =w1(93”£1, ...,ma),
Ay € wa(I® Bt Cy, ..., 1® it Cy) C wp(I® it Dy, ..., I® Bt D;,) = wa(Xy, ... , Xp).

Thus, there exist Fitting classes Ry, ..., R, such that
Ae wl(SR,-l RN i)%ia)Awg(ile sy iRj,,) = w(‘ﬁl, ceey iRm),

where R; = [ fit K; for K; € §;. This proves the lemma. ]
Lemma 7. Let w(z,...,Tm) be a term of signature {N,V>®}, and let f; be an inner 1> -valued H -

function for a Fitting class §;, i=1,...,m. Then

U)(Sl, RS ,Sm) _—“LR(w(fly . 7fm))-

Proof. Let us perform induction on the number 7 of occurrences of the symbols belonging to {N, v}
in the term w. Let

W(T1, .oy Tm) =wi(Tsy s oo Tip ) Awa(Tj,, ..., T5,),
where A € {N, v} and {z;,,...,z;, }U{zj,...,2;} = {®1,...,Tm}. Assume that the lemma holds

for the terms w; and ws. Then

wl(gil Yooy Sia) = LR(wl(fil yeoey fia))1 w2(8j1 s ey gjb) = LR((‘J?(fjl Yy fjb))'

It is clear that wi(fi,,..., fi,) and wa(fj,,..., f;) are inner [°°-valued H -functions for the Fitting
classes wi(Fi, .-, 8i,) and w2(Fj,, ..., 5j,), respectively. Hence, by induction we obtain

w(gly ceey S’m) = wl(gil yreey Sia)sz(Sjl yreey S}b)
= LR(wl(fil P fia)AwZ(fj17 ey fjb)) = LR(w(fla sy fm));
where A € {N, v*®}. This proves the lemma. O

An element ¢ of a complete lattice L is said to be compact if, for any subset X C L, it follows from
the inequality ¢ < supy X that there exists a finite subset Xo € X such that ¢ < sup; Xo.

Lemma 8. Let § = I fitG, where the group G is solvable. Then § is a compact element in the
lattice 1*°.



Proof. Let us show by induction on the nilpotent length of the group G that § is a compact element
of I®°. Let § C M =V>®(F;|i€I), where §; is a totally local Fitting class.

If (G)=1, then G = P, x--- x P, where P; is a Sylow p;-subgroup of the group G. Hence, there
are indices ji1,..., jk € I such that p; € n(§;,), i.e., P; € §;,. Therefore, G € §;, V*°--- V> §;, . Hence,
§C )y V- VR,

Let I{(G) > 1, and let all totally local Fitting classes of the form [*fit A, where A is a solvable
group and [(A) < I(G), are compact elements of the lattice {°°. Let f; be the minimal {*-valued H-
function for the class §;, let f be the minimal [*°-valued H -function for the class §, and let m be the
minimal [*-valued H -function for the class 9. Then by Lemma 1 we have f(p) = I fit(FP(G)) for
all p € 7(G), and f(p) = @ for p € P\ n(G). Moreover, it follows from Lemma 1 that f < m. By
Lemma 2, m = V®(f; | i € I). Since I(FP(G)) < I(G), it follows from the induction assumption that, for
any p € n(G), there are indices i;,...,4; € I for which

FP(G) € fi,(p) V*° -+ V= fi,(p)-

Since |7(G)| < oo, it follows from the last relation that there are indices ji,...,Jk € I such that
G e ve---Vv®F;. Thus, §F C §Fj, v .- V® Fj.. Therefore, § is a compact element of the
lattice {*°. This proves the lemma. [

By L>(F) we denote (see [6]) the lattice of all totally local Fitting subclasses in F.

Lemma 9. Let § be a totally local Fitting class. Then, for any positive integer k > 2, the lattices
L®(FNk-1) and L®(FNF) generate the same variety of lattices.

Proof. Let us choose an identity

wl(xil,...,:z:ia)=w(a:j1,...,:cjb) (*)

of signature {N, v°°}.
If identity (*) holds in the lattice L°(F91*), then it holds in any sublattice of the lattice L=(FNF).
Therefore, identity (*) holds in the lattice L™ (F0*k1).
We assume now that identity (*) holds in the lattice L®(FM*~!) and that J;,, ..., §i, and §j,,
.., §j, are some Fitting classes in L™°(F91*). Let f;. be the minimal [*-valued H -function for the
class §;., c=1,...,a,and let f;, be the minimal {*-valued H -function for the class §;,, d=1,...,b.
By Lemma 7,

wWi(Seys--vs ia) = LR(w1(firs---> fin))s wa(Sjys -5 ip) = LR(wa(Fy 5 - -+ » i)

Note that, for any p € P, the classes

fi1(p)7---)fia(p)7 f]x(p)aafjb(p)

belong to the lattice L=(FN*k-1). Hence,

wilfiys oo fi)P) = wilfi, 0), - - -5 fin (P)) = wa(f5i (D), -5 [ (P)) = walfins - - -5 £3,)(P)-

Therefore, wy (i, ,---» i,) = w2(§j,---»5j,). Thus, identity () holds in the lattice L>(F9*). This
proves the lemma. O

Lemma 10. Let n be a sublattice of the lattice of solvable totally local Fitting classes that contains all
singly generated totally local Fitting subclasses of any Fitting class § € 1. Then the identity wy = wa of
signature {N,V>®} holds in n provided that it holds in any singly generated totally local Fitting classes
mn.
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Proof. Let x;,...,%;, be the variables appearing in the term w;, let z;,,..., z;, be the variables

appearing in the term ws, and let §;,,...,8i,,54,,---, 64 € 7. Let us show that

S =wi(Siy,---» Bia) Cw2Sjy,--085) =M.
Let Zj,---,%j € {€i,..., T, },and let {z;,  ,...,z;} " {z5,..., 25, } = &. Assume that A€ F. In
this case, by Lemma 6, there are groups A;,, ..., A;, such that A;, € §;, forall k€ {1,...,a} and

AeBGNuw(I®fitA;,...,I"fit4; ).
Let $;, =[*fit A;,, and let

5. = { Hi., where z;, =z;, forsomece {1,...,a}forall k € {1,...,¢},
7\ 1®fitB;, for some group B;, € §;, provided that k > t.

By assumption, wy($:,,-...,9i,) = w2(Hj,, .-, D) € M. Therefore, A € M. Thus, §FC M. The
converse inclusion can be proved in a similar way. This proves the lemma. 0

Recall [6] that, if classes of groups 90t and §) are such that M N H = (1), then M & H stands for the
set of all groups of the form {Ax B| A€ M, B € H}.

Theorem. The lattice of all solvable totally local Fitting classes is algebraic and distributive and each
its element that differs from (1) and & is not complementable in this lattice.

Proof. Let us show that the lattice L*°(&) is algebraic. Obviously, any totally local Fitting class is
the union of its singly generated totally local Fitting subclasses in the lattice [*°. Let § = (® fitG, where
the group G is solvable. By Lemma 8, § is a compact element of the lattice [°°. Hence, § is a compact
element of the sublattice L>°(G) of the lattice [°® as well. Thus, the lattice of all solvable totally local
Fitting classes is algebraic, and its compact elements are the singly generated totally local Fitting classes.

Let us prove now that the lattice L>®°(S) is distributive. We first show by induction on r that the
lattice L°°(91") is distributive. The lattice Lo (91) is certainly distributive. Let » > 1, and let the lattice
L®(M"~1) be distributive. Then it follows from Lemma 9 that the lattice L (9") is also distributive.

Assume now that § = I fit G, where [(G) = r. Then G € N, and therefore L™ (I fitG) C L>(M").
Thus, the lattice L*®(I* fit G) is distributive. Hence, by Lemma. 10, the lattice of all solvable totally local
Fitting classes is distributive.

Let us prove now that each solvable totally local Fitting class that differs from (1) and & is not
complementable in the lattice L>®(&). Let 91, where MM # (1) and M # S, be a solvable totally
local Fitting class, and let $ be a complement to 9 in the lattice L>°(S). Then & = M V™ §H and
mnH = (1).

Let us show that M Vv>® H = MV §H. Consider the Fitting class F=DMV H. Since MNH = (1), it
follows that K(IM)NK($H) = &, where L (M) is the set of all composition factors of the groups in IM and
K($) is the set of all composition factors of the groups in §. Hence, § =M@ $H by Lemma 4 from [14].
Let us show that the class 9 @ $ is totally local. Let m and h be the minimal [*°-valued H -functions
of the classes MM and £, respectively. Let f be an H -function such that

m(p) for p € (M),

flp) =4 h(p) forpen(9),
/%] for p e P\ (w(9M) U n(9H)).

Let us show that § = LR(f). Let G be a group of minimal order in LR(f) \ §. Then the group G is
comonolithic, and its comonolith is M = Gg. Since G € LR(f), it follows that FP(G) € f(p) for all
p € 7(G). Hence, if p € ©(G), then it follows from the construction of the H -function f that either
f(p) =m(p) # @ or f(p)=h(p) # 2. Thus, 7(G) € (M) Un(H).

Let p € 7(G/M). Then p € n#(M)Un(fH). Assume now that p € =(MM). Hence, G/M is a p-group, and
F?(G) = O?(G) € f(p) =m(p). Hence, G € M C §F by Lemma 4. A contradiction. Thus, LR(f) C §.
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Assume that the converse inclusion fails and that G is a group of minimal order in §\ LR(f). Then
the group G is comonolithic. Therefore, either G € M or G € $H. Let G € M = LR(m). Thus, FP(G) €
m(p) = f(p) for any p € 7(G). Hence, G € LR(f). This means that § C LR(f). Therefore, § = LR(f)
is a totally local Fitting class. However, MV H C §F. This means that MV H =MD H = MV H.
Hence, for any comonolithic group G € & we have either G € T or G € 5.

Let Z, and Z, be some groups of orders p and g, respectively, where p € #(9) and g € 7(5). Let
r € P\ {p,q}. Then, by [1, Chap. B, Corollary 10.7], the group A = Z, x Z, has a simple faithful
module P over a field F, with r elements. Let B = [P]A. Then B € & and at the same time B ¢ M
because g ¢ w(9M), and B ¢ §) because p ¢ w(5H). However, the group B is comonolithic, and hence
either B € M or B € . A contradiction. Thus, any nonzero and nonidentity element of the lattice of all
solvable totally local Fitting classes is not complementable in this lattice. This proves the theorem. O

Let L be an arbitrary lattice. By a pseudocomplement of an element a with respect to an element b
we mean [15] the largest of the elements z of the lattice L that satisfy the inequality a Az < b.
The pseudocomplement of an element a with respect to an element b is denoted by a *b. By the
pseudocomplement of an element a in o lattice with zero we mean the relative pseudocomplement a * 0.
By definition, a lattice with pseudocomplements is a lattice with zero in which each element has the
pseudocomplement.

By Corollary 2 to Theorem 1 in {16, Chap. II, p. 151 of the Russian translation], the above theorem
has the following consequence.

Corollary 1. The lattice of all solvable totally local Fitting classes is a lattice with pseudocomplements.

Recall that a representation of an element a in the form zoV:--V z,_; is said to be cancelable [16] if
a=xTogV V&1 VZTip1 V-V, 1 for some 0 < ¢ < n; otherwise it is said to be noncancelable.

A totally local Fitting class § is said to be [ -irreducible [2] if the class § cannot be represented in
the form § = V™(F; | ¢ € I), where {F; | i € I} is the set of all proper totally local Fitting subclasses
in§¥.

Corollary 2. Let § be a solvable singly generated totally local Fitting class. Then § has a unique
representation in the form of an noncancelable union F1V>°---V®F, of some its totally local I*° -irreducible
Fitting subclasses §1,...,St-

Proof. By Corollary 13 to Theorem 9 in {16, Chap. II], to prove this corollary, it suffices to show that
the lattice L>°(F) of all totally local Fitting subclasses of an arbitrary solvable singly generated totally
local Fitting class § = [* fit G is finite. Let us perform induction on the nilpotent length of the group G.

If {(G) = 1, then any nonidentity totally local Fitting subclass in § is of the form M, , where # C «(F).
Hence, there are only finitely many totally local Fitting subclasses of §.

Let {(G) > 1, and let the lattice L>°(I* fit A) be finite for any totally local Fitting class of the form
[®fit A, where I(A) < (G). Let 9 be an arbitrary totally local Fitting subclass in §, and let m
and f be the minimal {*°-valued H -functions of the classes I and §, respectively. Then it follows from
Lemma 1 that m < f. Moreover, by the same lemma, for any p € #(F) we have the relation

flp) =1 fit(FP(A) | A € F).

Since I(FP(G)) < l(G), it follows that the lattice L°(f(p)) is finite by the induction assumption. Since
the set 7(F) is also finite, it follows that § has only finitely many totally local Fitting subclasses. This
proves the corollary. [

For any two totally local Fitting classes 9 and $), where MM C §, by /9 we denote [6] the lattice
of totally local Fitting classes between 2t and §.
Since any distributive lattice is modular, the above theorem implies the following assertion.

Corollary 3. For any two solvable totally local Fitting classes M and 8, the following lattice isomor-

phism exists:
MV® H/CM ~ H/7HNM.
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Corollary 4 [6, Theorem 4.1.7]. The lattice of all solvable totally local formations is distributive.

Proof. Let us show that any solvable totally local Fitting class § is hereditary. Without loss of
generality, we may assume that § = [* fitG for some solvable group G. If the group G is nilpotent,
then the assertion is obvious. Assume that the nilpotent length ¢ of G exceeds one. Then, if f is the
minimal [*°-valued H -function for the class §, then, since [(FP(G)) < ¢, it follows from the induction
assumption that, for any p € n(G), the Fitting class f(p) = [ fit(F?(G)) is hereditary. Hence, the class §
is hereditary, and therefore, by the results in [17], the class § is a totally local formation. Therefore, each
solvable totally local Fitting class is a totally local formation.

Arguing in the same way, we can readily see that each solvable totally local formation is a hereditary
Fitting class. However, by the theorenx in 7], any solvable hereditary Fitting class is a totally local Fitting
class. Hence, any solvable totally local formation is a totally local Fitting class.

Thus, the lattices L°°(S) and L, (&) coincide. Therefore, by the above theorem, the lattice of all
solvable totally local formations is distributive. This proves the corollary. []

The technique of proofs and the arguments suggested in the present paper heavily depend on the solv-
ability condition. As far as the nonsolvable case is concerned, we can say nothing even on the modularity
of the lattice of all totally local Fitting classes.

Question. Is the lattice of all totally local Fitting classes distributive (or at least modular)?

A similar question for totally local formations was presented in [6, Question 4.2.14].
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