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All groups under consideration are finite. Recall tha t  functions of the form S : P  ~> { formations } are 
called formation functions [1] or satellites [2]. If a class of groups ~: is of the form 

p~(~) 

where S is a satellite, then we say that ~ is a local formation with satellite S azld write ~: = LF(S).  Here 
7r(~) is the set of all prime divisors of the orders of the groups in 5,  and the symbols 91p and ¢5p, stand 
for the class of all p-groups and the class of all pt.groups, respectively. 

Functions of the form f :  1 ) ~-+ {Fitting classes} are called Hartley functions or briefly H-functions [2]. 
If for a class of groups ~ we have 

p~(~) 

where f is an H-function, then we say that ~ is a local Fitting class with H-function f and write 
= LR(f ) .  
When surveying the best-known specific classes of groups, it can readily be discovered that these classes 

can be defined by means of functions whose nonempty values axe some local classes themselves. This fact 
led to the following natural construction [3]: each formation is assumed to be 0-fold local and, for n _> 1, 
a formation ~ is said to be n-fold local if ~ = LF(S) ,  where all the nonempty values of the satellite f 
axe (n - 1)-fold local. A formation is said to be totally local if it is n-fold local for all positive integers n.  
The n-fold local and totally local Fitting classes are defined in a similar way. We can readily show that  the 
class of solvable totally local formations coincides with the class of so-called primitive saturated formations 
introduced by Hawkes in [4]. Multiply local classes have applications in the solution of many problems in 
the theory of classes (see, e.g., [5-10]). 

The totally local classes are the limit case of n-fold local classes and have specific properties. In 
particular, we note that, for any nonnegative integer n ,  the lattices of all n-fold local formations, of the 
n-fold local hereditary formations, of the n-fold local normally hereditary formations, etc., axe modular,  
but all these formations are not distributive even in the class of solvable groups ® (see [5, Chap. 2] and [6, 
Chap. 4]). As far as the totally local formations are concerned, it is not known at present whether the 
lattice of all totally local r-closed formations is at least modular for at least one nontrivial subgroup 
functor T [6, Question 4.2.14]. At the same time, in [5] it was announced that the lattice of 'all solvable 
totally local formations is distributive. In the present paper we prove that the lattice of all solvable totally 
local Fitting classes is algebraic and distributive, and each of its elements that differs from (1) and G 
is not complementable. In the course of proving this result, we clarify some general properties of the 
generation operator V ~ . On the other hand, as one of the consequences, we give here a complete proof 
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of the distributivity of the lattice of all solvable totally local formations; another scheme of such a proof 
was discussed in the monograph [6]. 

Let us recall some definitions [2] related to local Fitting classes. By the symbol FV(G) we denote the 
subgroup OP(OP'(G)). By l °° we denote the lattice of all totally local Fitting classes. An H-funct ion f 
is said to be leo-valued [6] if each nonempty walue of f belongs to the lattice I ~¢ . Let {fi(P) [ i ~ I }  be 
an arbitrary collection of  l °° -valued H-functions. For any p ~ P we set 

( N  s,)e  = N 

An H-funct ion n i e i  fi is called the intersection of the H-fuimtions f i .  If a Fitting class ~ admits  at 
least one l °°-valued H-function, then the intersection of all such H-functions for the class ~ is called the 
minimal l °° -valued H-function of the class ~.  

Let 3E be an arbitrary nonempty family of groups. The intersection of all totally local Fitting classes 
containing :£ is denoted by l °° fit:£ and is called the totally local Fitting class generated by :£ [2]. If 
:E = {G}, then we write l °° fit G instead of leo fit{G}. Each Fitting class of this form is called a singly 
generated totally local Fitting class [2]. 

We need the following special case of Lemma 21 in [2]. 

L e m m a  1. / f  ~ = leo fit :E and if f is the minimal l ~° -valued H -function for the class ~ , then 

S(p) = leo fit(Fn(G) I G e 3~) 

for all p e zc(2~), and f(p)  = Z for any p E P \ r(~E). 

P r o o f .  Let t be an H-funct ion such that t(p) -" leo fit(FP(G) I G E :E) for any p E ~r(:£) and t(p) = O 
for any p E P \ 7r(iE). Let us show that t = f .  Let ff)~ = LR(t). Then it is clear that :£ C ffJ~. Hence, 

C_ YY~. Let ]1 be an arbitrary leo-valued H-function of the class ~.  Then, since :£ C ~, it follows that  
(FV(G) I G E ~) C_ fl(P) for any p E P. Therefore, t(p) C fl(P).  Consequently, 9Yt _C ~. Hence, 92I -- 
and t --- f .  This proves the lemma. [] 

Let { ~  I i E I} be an arbitrary family of Fitting classes in 1 °° . In this case, by Veo(~i I i E I )  we 
denote [6] the least upper bound of {~i I i E I} in I eo and by VCC(f~ I i E I)  the H-function f such tha t  
f (p)  is the least upper bound of {f~(p) I i E I} in l ¢¢ if Ui~r f/(p) ¢ o ,  azld f (p )  = O otherwise. 

Lem_ma 2. Let fi be the minimal leo-'valued H-function for the Fitting class ~.~, i E I .  Then the 
function V°°(fi I i E I) is the minimal leo -valued H-function for the Fitting class ~ = Veo(~i I i E I ) .  

P r o o f .  Let 

= = U = 
i6Z i E r  

let f = V °° (fi I i E I ) ,  and let h be the minimal leo-valued H-function for the Fitting class ~.  Let us 
show that  h = f .  

Let p e P \ r .  In this case, for any i E I ,  we have h(p) = g and f/(p) = ~ .  Hence, S(p) = g .  
Let p E r .  In this case, there is an i e I such that fi(P) ¢ g .  By Lemma 1 we have 

h(p) : leo fit( (FV(G) l G E U ~ i ) )  = leo fit( ( U  l°c fit((FP(G) l G E ~,)))) 
gEI iE I  

= leo f i t ( (  u f,(p))) = ((Veo(/, I i E I)))(p)= f(p). 
i E I  

This proves the lemma. [] 

An H-function f is said to be inner if S(p) C LR(f)  for any p E ]P. In what  follows, we need the 
following lemma, which is a special case of the result obtained by Vorob~ev in [11]. 
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L e m m a  3. For any totally local Fitting class ~ ,  the class ~9~p totally local. 

L e m m a  4 [2, Lenmm 23]. Let ~i = LR(f) .  In this case, if OB(G) ~ f(p) n ~, then G ~ ~.  

To any Fitting class we can assign the smallest (by inclusion) Fitt ing class ~* [12] that contains ~ and 
satisfies (G x H)~. = G~. x H~. for any groups G and H. A Fitt ing class ~" is called a Lockett class if 

L e m m a  5. /f  {~  ---- LR(f~) I i E I} is a set of totally local Fitting classes, where f~ is an inner l ~ - 
valued H-function, then 

V°°(~'~ l i ~ I) = LR(V°°(f~ l'i E I)) .  

ProoL Let ~ = V ~ ( ~  I i E I) ,  let ~t  -- LR(V°°(f~ [ i ~ I)),  and let hi be the minimal 1 ~-valued H-  
function for the class ~ .  Then, by Lemma 2, h = v~(h~ I i ~ I) is the minimal l ~¢ -valued H-function 
for the class ~. Since h~ < f~, it follows that, for any p ~ P, the following inclusion holds: 

l°° fit(U hi(p)) C l°° fit(U fi(p)). 

Hence, ~ C. 9Jl. 
Now let us prove the converse inclusion. Let t~ be an H-function for ~ such that ti(p) = hi(p)fftp for 

any p E P. By Lemma 3, this H-function is l ~-valued. Let us show that fi _< ti. 
Assume that fi ~ ti. Then there is a prime number p such that  f~(p) ~ ti(p). Let G be a group 

in f~(p) \ t i (p) .  Let F = G I Z p  = [K]Zp, where Zp is agroup  of order p and K is the base of the 
regular wreath product F. Since each local Fitting class is a Lockett class [13] and G ~ ti(p), it follows 
from [1, Chap. X, Proposition 2.1 a)] that F~(p) = K1, where K1 is the base of the regular wreath product 
F1 = Gtdp ) ~ Zp. It follows from the properties of the wreath products (see, e.g., [1, Chap. A, 18.2 d)]) 
that 

= r/K  

Hence, the order of the group F/F**(p) is divisible by p. 
Since G E fi(P), it follows that K E fi(P). Therefore, K _C FA(p). Since F / K  ~_ Zp E 9Ip, it follows 

that 
--- e 

Hence, by Lemma 4 we obtain F E fi(p)91m C ~ -= LR(f~) -- LR(t~), and therefore 

r e ( ti(q)O3q,) 

and, in particular, F E t~(p)CSp, for any p E ~r(~). Consequently, F/Ftdp) E ~p,. A contradiction. 
Thus, fi _< ti. Hence, f -- V°~(fi l i E I) < V~(ti  l i E I),  i.e., for any p E P we have the inclusion 

f(P) = V (fi(P) l i e Z) C_ V°°(ti(p) l i e Z) = V (hi(p)91p l i e Z). 

Since hi(p)~p C_ (V°°(h~(p) l i e I))~lp, it follows that 

l°~f i t (Uhi(p)91,)  c_ l~fi t(vcc(hi(p) l i e I)9~p) = (V°°(hi(p) l i e I))~R, 
i E I  

for any p E P. However, ~ = LR(t), where t is an l co-valued H-function such that 

t(p) = (V~C(hi(p) I i e I))9~p 

for any p E 1 m. Hence, f < t. Thus, ff/t C ~. Therefore, 9Jr -- ~. This proves the lemma. [] 
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L e m m a  6. Let A ~ . . . ,  where w( z~ , . . . ,  Xm) is a term of signature {n, V~¢}, and let 
~ t , . . . ,  ~m be some solvable totally local Fitting classes. Then there are groups A~,° . . ,  Am ( Ai ~ ~ ) 
such that A ~ w(l ~ f i t A ~ , . . .  , l  ~ f i t A m ) .  

P r o o f .  Let us prove by induction on the  n u m b e r  r of occurrences of symbols belonging to {n,  v¢¢} 
in the te rm ~ t h a t  there  exist groups Ai ~ ~ ( i  = 1, . . . ,  m)  such tha t  

A ~ w(l ~ fit A t , . . . ,  l ¢¢ fit Am). 

For r = 0 we obviously have A ~ l :¢ fit A .  Let  us prove by induct ion  on the  ni lpotent  length of the 
group A tha t  the  assert ion holds for r = 1. 

Let A ~ ~t V ~¢ ~2 = l ~ fit(~t U~2) and ~r(A) = {pt ,  . . . ,  Pk}. For l(A) = 1 we have A = Pt  × " "  × Pk, 
where P~ is a Sylow p i - subgroup  of the g roup  A.  It  is clear tha t  ~r(A) C ~r(~t)U~r(~2). Let P t , . . .  ,Pj 
~r(~) and P i + t , . . . , P ~  q 7r(~2). Then  At  = P t  × ' " × P ~  e ~ t  and A2 = P /+ t  × " ' × P k  ~ ~2. 
Obviously, 

A = At × A2 ~ (l ¢¢ fit A~)V ¢¢ (l z¢ fit A2). 

We assume now tha t  l(A) > 1. Let the  des i red  assertion hold for all solvable groups whose ni lpotent  
length is less t h a n  t ha t  of the  group A. By  L e m m a s  1 and 2, for an  arbi t rary pi ~ ~r(A) we have 

F~'(A) ~ ft(p~) V ¢¢ f2(Pi) = (l~fi t(F~'(G) I G ~ ~ t ) )  v (l¢¢ ~ t (F~ ' (V)  t G e ~ ) ) ,  

where f j  is the  min imal  l~ -va lued  H - f u n c t i o n  for the F i t t ing  class ~ j ,  j = 1, 2. Since I(FP~(A)) < l(A), 
it follows by tlm induc t ion  asstm~ption t ha t  t he re  are groups A~I ~ ft(Pi) and Ai2 ~ f2(Pi) for which we 
have F p~ (A) ~ (l ~ fit Ai, ) V ~ (l ~ fit Ai~). 

Let B~ = A~ t Zp~ and Bi~ = Ai~ I Z ~ ,  where  Zp, is a cyclic group of order p i ,  and K is the base of the 
regular wreath  p roduc t  B ~ .  Since Ail e f t  (Pi) ,  it follows by L e m m a  4 tha t  we have B~, e f t  (pi)9~p, C ~ .  
Similarly, Bi= 6 ~2. 

Hence, A~ = Bt~ × --- × Bt~ ~ ~dt and A2 = Bt~ × -.- × Bt= 6 ~2.  Let us show tha t  

A ~ ~ = (l ~ fit A~) V ~ (l ¢¢ fit A2). 

Let h be  the  min ima l  1 co-valued H- func t ion  for the  class ~ ,  and  let S be an 1 °° -vahmd H-func t ion  for 
the class ~ such t ha t  $(p) = h(p)9~ for any p E P .  Let i E {1, . . . ,  t} .  Let us show tha t  F r'̀  (A) E $(Pi). 
First we prove t ha t  Ai~, Ai~ E f (Pi) .  A s s u m e  tha t  Ai~ ~ f(pi). In this case, since f(p~) is a Lockett  
class [13], it follows from [1, Chap. X, p r o p e r t y  2.1 a)] tha t  (B~,)S(p,) = / ( i ,  where K~ is the base of 
the regular wrea th  p roduc t  (A~t)S(p~) ~ Zp, .  B y  the  propert ies  of wrea th  p roduc t s  (see, e.g., [1, Chap.  A, 
18.2 d)]) we have 

Bi~/(Bi~)f(p,) = Bi~/Kt ~- (Ai,/(Ai~)$(p~)) ~ Zp~. 

Hence, pi is a divisor of the  order of Bi~/(Bi~)f(p~). 
On the other  hand ,  since Bi~ ~ ~,  it follows t h a t  

and, in particular,  Bil E /(pi)qSp;. Hence,  Bil/(Bi,)f(p~) E Op, .  A contradict ion.  Thus,  we have 
Ai~ e f(p~). Similarly, Ai2 E f(Pi). Therefore ,  l ~ f i t ( A i l ,  Ai2) C S(pi). Clearly l ¢¢ f i t(Ai, ,  Ai2) = 
(l ¢¢ fit Ail) V ~ (l ~ fit Ai2). Thus,  F p' (A) E S(pi). 

If A E ~t  A m ~2 = ~t n ~2, then A e (l ~ fit A) A ~ (l ¢¢ fit A) .  Th is  completes the  proof  of the theorem 
for r = 1. 

Let a t e rm w have r > 1 occurrences of symbols  belonging to {n,  V ~ } ,  and  let the  l emma hold for 
terms with lesser number  of occurrences. A s s u m e  tha t  w is of the  form 

( z i l ,  • .  • ,  ( z j l ,  • • • ,  z b), 
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where A e {~ ,V °~} and { x i , , . . . , x ~ }  0 { x j , , . . . , x ~ }  --- { x ~ , . . . , X m } .  
By 2)1 we denote the Fitting class w l ( ~ i , , . . . ,  ~i ,)  and by 2)s the Fitting class 0 ;2(~ j~ , . . . ,  ~j~). 

Then, as was proved above, there are groups A1 ~ 2)~ and As ~ 2)s such that  A ~ l c¢ fit A I A I  c¢ fit A2. 
Since the number  of operations in the term ¢al is less than r ,  it follows by the induration assmnpt ion that  
there are groups BI ~ ~il ,  . . . ,  B~ e ~i~ such tha t  A1 ~ 0;t(l = fit B ~ , . . . ,  l °~ fit Ba).  Similarly, there are 
groups C1 ~ ~ j , , . . . , C b  ~ ~ such that  As ~ 0;2(l ~ f i t C 1 , . . . , l  ¢¢ fi tCh).  

Let x4+~ , . . .  ,xi~ ~ { x j , , . . . , x j b }  and let { x 4 , . . . , x i , }  N { x j , , . . . , x j ~ }  -= ~ .  Assume tha t  

= f Bk for k < t + 1, 
D~, 

t Bk x Cq, where xi~ = xjq for some q ~ {1, . . . ,  b} provided that  k > t + 1. 

Let Dj~ = Ca if xj~ ~ {xi,+~, . . . ,  xi, }. By YJtp we denote the class U ¢ fit Di~, where p -- 1, . . . ,  a ,  and 
by ~c the class l ~ fit D3~, where c = 1, . . . ,  b. 

Thus, 

A1 E 0;1(l ~ fitB1, . . . ,  l °~ f i tBa) C 0;1(1 ~ f i t D 4 ,  . . .  , l ~ fit D i , )  -- wi(9711,. . . ,  9~ta), 

A2 ~ 0;s(l c0 fit C1, . . . ,  l ~ fit Cb) C_ 0;2(l ~ fit Dj , ,  . . . ,  l ¢¢ fit Dj~) = Ws(~t, . . . ,  ~b). 

Thus, there exist Fitt ing classes ~R1, . . . ,  ~Rm such that  

A E 0;l(ff~i,, . . . ,  ~Ri~)A0;2(Vtj,, • • •, ~Rjb) ---- 0;(Vtl, • . . ,  9~m), 

where ~Ri = l ~ fit Ki for Ki ~ ~i. This proves tim lemma. [] 

L e m m a  7. Let 0 ; ( x l , . . . ,  xm) be a term of signature {N, V ~ } ,  and let J~ be an inner l °° -valued H -  
function for a Fitting class ~i ,  i = 1 , . . . ,  m .  Then 

0;(~1, . . - ,  ~m) -= LR(w(fz,  . . . ,  fro))- 

P r o o f .  Let us perform induction on the number  r of occurrences of the symbols belonging to {D, V ¢~ } 
in the te rm ca. Let 

. . . ,  =   o)A0;s(x l, . . . ,   Jb), 

where A E {n ,V  °°} and { x i : , . . .  ,x i ,}  U {xj~, . . .  ,xjb } = {xl ,  . . .  , x m } .  Assume tha t  the  lemma holds 
for the terms o;1 and 0;2. Then 

0;1(~i~, . . . ,  ~i , )  = LR(0;l(fi , ,  . . . ,  f ia)) ,  0;2(~j,, - - . ,  ~Jb) = LR(0;2(fj,, • • •, fib))" 

It is clear that  0;1 ( f i l , . . . ,  f ~ )  and 0 ; s ( f j , , . . . ,  fib) axe iimer /°°-valued H-funct ions for the  Fitt ing 
classes 0;1(~i,, . . . ,  ~ia) and 0;s (~ j l , . . . ,  ~Jb), respectively. Hence, by induction we obtain 

-- L R ( 0 ; l ( f i , , . . . ,  f i~)A0;2( f j~ , . . .  , fib)) = LR(0;(fl ,  . . . ,  fro)), 

where A E {N, V°°}. This proves the lemma. [3 

An element c of a complete lattice L is said to be compact if, for any subset X C L,  it follows from 
the inequality c < suPL X that  there exists a finite subset Xo C X such that  c < suPL Xo.  

L e m r n a  8. Let ~ -= l °° fit G, where the group G is solvable. Then ~ is a compact element in the 
lattice l ~ . 
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P r o o f .  Let us show by induction on the  n i lpotent  length of the  group G tha t  ~ is a compact  element 
of 1 c¢ . Let ~ C OR = V °° ( ~  I i e I) ,  where ~i is a totally local F i t t i ng  class. 

If l(G) -- 1, t hen  G = P~ × .-- x Pa ,  where  Pi is a Sylow p~-subgroup of the  group G.  Hence, there 
are indices J l , . . . ,  j~ ~ I such that  pi ~ ~r(~i,), i.e., P~ ~ ~ j , .  Therefore,  G e ~1t v ° ° . . .  v °0 ~ .  Hence, 
~ c ~ ,  voo . . .  vo~ ~ .  

Let l(G) > 1, and  let all totaUy local F i t t ing  classes of the  fo rm l °° fit A,  where A is a solvable 
group and l(A) < l(G), are compact e lements  of the  lattice l °° . Let  f i  be the  min imal  l ~°-valued H -  
function for the class ~ i ,  let f be the min ima l  l °°-valued H - f u n c t i o n  for the class ~ ,  and let m be the 
minimal  /°°-valued H- func t ion  for the class OR. T h e n  by L e m m a  1 we have f (p)  = l °° fit(FP(G)) for 
all p ~ ~r(G), and  f (p )  -- ~ for p ~ ~ \ ~r(G). Moreover, it follows from L e m m a  i tha t  f <_ m .  By 
L e m m a  2. m = y°° ( f i  [ i ~ I ) .  Since l(FP(G)) < l(G), it follows f rom the induct ion  assumpt ion  that ,  for 
any p ~ ~r(G), there are indices i ~ , . . . ,  i~ ~ I for which 

F ~ ( C )  e f~,(p) v ° ~ . . -  v °° f~,(p).  

Since Izr(G)] < oo, it follows from the last relat ion that  there  are indices j~,  . . .  , j a  ~ I such that  
G ~ ~j~ V °° " ' "  V °°  ~ j ~ .  Thus,  ~ C_ ~j~ V c~ . . .  V °° ~ .  Therefore,  ~ is a compac t  element of the 
lattice 1 :° . This proves the  lemma. [] 

By L°°(~) we denote  (see [6]) the latt ice of all total ly local F i t t i ng  subclasses in ~ .  

L e m m a  9. Let ~ be a totally local Fitting class. Then, for any positive integer k >_ 2, the lattices 
L°°(~Y~ k - l )  and L ° ° ( ~  k) generate the same variety of lattices. 

P r o o f .  Let us choose an identity 

~ ( ~ 1 ,  . . . ,  ~ o )  = ~ ( z ~ ,  . . . ,  ~ )  ( , )  

of signature {N, V°°}. 
If identi ty ( , )  holds in the  lattice L°°(~91k),  t hen  it holds in any sublat t ice of the  lattice L°°(~91k). 

Therefore, identi ty ( . )  holds in the lattice L°°(~d91k-1). 
We assume now tha t  identi ty ( . )  holds in the  lattice L~°(~91 k - l )  and tha t  ~i~, . . - ,  ~i ,  and 3:j~, 

• -. , ~Jb are some F i t t ing  classes in L°°(~OIk).  Let f~o be the  min ima l  /°°-valued H-func t ion  for the 
class ~i~, c = 1, . . . ,  a ,  and  let fld be the  min ima l  l °°-valued H - f u n c t i o n  for the  class ~Jd' d = 1, . . . ,  b. 
By L e m m a  7, 

w l ( ~ , ,  . . . ,  ~i~) ---- LR(wl(fi~,  . . . ,  .fi ,)) ,  w2(~~,  . . . ,  ~Jb) = LR(w2(fj~,  . . . ,  fib))- 

Note that ,  for any p E P ,  the  classes 

f , ,  (p), . . . ,  f~o (p), f ~  (p), •. •,  fib (p) 

belong to the latt ice L ~ (~9~k-1). Hence, 

~1(f,1,  . . . ,  f~o)(p) = ~l(J~l (p), . . . ,  f~o (p)) = w-~ (fJ, (p), -. • ,  feb(p)) = ~ ( f ~ , ,  - . . ,  fJb)(p). 

Therefore, wl (~1 ,  . - . ,  ~ia) -- w2(~jl, . . - ,  ~Jb)- Thus,  identi ty ( , )  holds in the  latt ice L °° (~9~ k). This 
proves the lemmm ffl 

L e m m a  10. Let 77 be a sublattice of the lattice of solvable totally local Fitting classes that contains all 
singly generated totally local Fitting subclasses of any Fitting class ~ E ~7. Then the identity wl = w2 of 
signature {N, V ~ }  holds in ~ provided that it holds in any singly generated totally local Fitting classes 
in~l. 
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P r o o f .  Let  xi~, . . . ,  xi, be the  variables appear ing  in the te rm cox, let xj~, . . . ,  xj~ be the variables 
appear ing  in the  term oa2, and let a i ~ , . . . ,  ~ i , ,  aj~, - . - ,  aj~ E ~]. Let us show t h a t  

= . . . ,  a o) c . . . ,  = 

Let x y 1 , . . . , x j ,  E { x 4 , . . . , x i , } ,  and let { x j , + , , . . . , x ~ b } n  { x i ~ , . . . , x i , }  = ~ .  Assume tha t  A E 5 .  In 
this case, by L e m m a  6, there are groups Ai~ , . . . ,  Ai= such that  Ai~ 6 ~i~ for all k E { 1 , . . . ,  a} and 

A e ~ n¢o~(/~ titAn1, . . . ,  l ~  fit Ai,) .  

Let .9i, = I ~ fit Ai, ,  and let 

)3jk = l ¢¢ fit Bj~ 

where xi ,  = xio for some c 6 { 1 , . . . ,  a} for all k 6 { 1 , . . . ,  t}, 

for some group Bj ,  6 ~Jk provided that  k > t. 

By assumpt ion ,  w l (~3 i l , . . . ,  ~3i~) -- w2(-~jl, . . . ,  53jb) C 9)t. Therefore, A 6 Dr.  Thus,  ~ _C flit. T h e  
converse inclusion can be proved in a similar way. This  proves the  temma. [] 

Recall  [6] that ,  if classes of groups Kit and )3 are such that  92t M ~ = (1), t h e n  92I @ ~3 stands for the  
set of all groups of the form {A × B I A E Dt, B E .9}. 

T h e o r e m .  The lattice of all solvable totally local Fitting classes is algebraic and distributive and each 
its element that differs f rom (1) and ® is not complementable in this lattice. 

P r o o f .  Let us show tha t  the  lattice LC¢(~) is algebraic. Obviously, any to ta l ly  local Fi t t ing class is 
the un ion  of its singly generated totally local F i t t ing  subclasses in the  lattice l °° . Let  ~ = l ~ fit G,  where 
the g roup  G is solwable. By L e m m a  8, ~ is a compac t  element of the lattice l ¢~ . Hence, ~ is a compact  
element of the  sublatt ice L¢¢(®) of the lattice l °¢ as well. Thus,  the lattice of all solvable totally local 
Fi t t ing  classes is algebraic, and its compact  elements are the singly generated to ta l ly  local Fi t t ing classes. 

Let us  prove now tha t  the lattice L ~ ( ~ )  is distributive. We first show by induc t ion  on r that  the  
lattice L ~ ( 9 t  ~) is distributive. T h e  lattice Lc¢(9t) is certainly distributive. Let r > 1, and let the lattice 
L~(91 r - l )  be distributive. T h e n  it follows from L e m m a  9 that  the lattice L~(9I  r) is also distributive. 

Assume  now tha t  ~ = / c o  fit G,  where l(G) = r.  T h e n  G 6 9I r , and therefore L ~ ( l  ~ f i tG) _C L ~ ( 9 l r ) .  
Thus,  t he  latt ice L~( l  ¢¢ fit G) is distributive. Hence, by Lemma 10, the lattice of all solvable totally local 
Fi t t ing  classes is distributive. 

Let us  prove now tha t  each solvable totally local Fi t t ing class that  differs f rom (1) and G is not  
complementab le  in the lattice L ~ ( ~ ) .  Let Y)t, where Y)t ¢ (1) and D1 ~ 6 ,  be  a solvable total ly 
local F i t t i ng  class, and let ~ be a complement  to 9)l in the lattice L¢¢(®). T h e n  ® = 9It V ~ .~ and 
~n.9 = (i). 

Let us  show tha t  9Y/V ¢¢ -9 -- 92l V ~ .  Consider  the Fi t t ing class ~ -- ff)I V ~). Since 9)I M ~ -- (1), it 
follows t h a t  K:(ffJt) M/C(~) = O,  where/C(D'/) is the  set of all composit ion factors of  the  groups in 9)I and  
]C(~) is the  set of all composi t ion factors of the  groups in ~ .  Hence, ~ = D1 @ )3 by L e m m a  4 from [14]. 
Let us show tha t  the class 9)t ~ -9 is totally local. Let m and h be the minimal  l co-valued H-func t ions  
of the classes 9Y¢ and Jh, respectively. Let f be an H-func t ion  such that  

r e ( p )  

f (p) = h(p) 

0 

for p E rr(Dt), 

for p E re(~3), 

for p E 1P \ (rr(9)t) U re(-9)). 

Let us show tha t  ~ = L R ( f ) .  Let G be a group of minimal order in LR(f )  \ 5 .  T h e n  the group G is 
comonoli thic,  and  its comonol i th  is M = G a . Since G E L R ( f ) ,  it follows t h a t  FP(G) E f(p) for all 
p 6 re(G). Hence, if p E re(G), then  it follows f rom the construction of the H - f u n c t i o n  f tha t  e i ther  
f(p) = re(p) • 0 or f (p )  = h(p) ¢ Z .  Thus,  re(G) c_ re(Dr) U re(~)). 

Let p E re(G/M). Then  p 6 re(ff-R)Ure(~3). Assume now that  p E re(9//). Hence, G / M  is a p-group,  and  
FP(G) = OP(G) 6 f(p) = re(p). Hence, G 6 9/t C ~ by Lemma 4. A contradiction.  Thus,  LR( f )  C 5 .  
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Assume that  the converse inclusion fails and that G is a group of minimal order in ~ \ LlZ(f). Then 
the group G is comonolithic. Therefore, either G E 9X or G E Y). Let G e ~ = LR(m) .  Thus, Fn(G)  E 
re(p) = f (p )  for any p E 7r(G). Hence, G e LR(f) .  This means that ~ C_ LlZ(f). Therefore, ~ = LR(f )  
is a totally local Fitting class. However, 9X V ~ C_ ~.  This means that 9X V °° .fi ---- 9X $ 20 = 9X V Y}. 
Hence, for any comonolithic group G E ® we have either G E ffJt or G E -ft. 

Let Z~ and Zq be some groups of orders p and q, respectively, where p E lr(YJ~) and q E 7r(Yj). Let 
r e P \ {p, q}. Then, by [1, Chap. B, Corollary 10.7], the group A = Zp x Z a has a simple faithful 
module P over a field ~'r with r elements. Let B = [P]A. Then B E ~ and at the same time B ~ 
because q ~ ~r(gX), and B ~ ~ because p ~ 7r(~). However, the group B is comonolithic, and hence 
either B E !Y~ or B E .~. A contradiction. Thus, any nonzero and nonidentity element of the lattice of all 
solvable totally local Fitting classes is not complementable in this lattice. This proves the theorem. [] 

Let L be an arbitrary lattice. By a pseudocomplement o f  an element a with respect to an element  b 
we mean [15] the largest of the elements x of the lattice L that  satisfy the inequality a A x <_ b. 
The pseudocolnplement of an element a with respect to an element b is denoted by a • b. By the 
pseudocomplement of  an element a in a lattice with zero we mean the relative pseudocomplement a • 0. 
By definition, a lattice with pseudocomplements is a lattice with zero in which each element has the 
pseudocomplement. 

By Corollary 2 to Theorem 1 in [16, Chap. II, p. 151 of the Russian translation], the above theorem 
has the following consequence. 

C o r o l l a r y  1. The lattice o/  all solvable totally local Fi t t ing classes is a lattice wi th  pseudocomplements.  

Recall that  a representation of an element a in the form x0 V-.-  V xn-z is said to be cancelable [16] if 
a -- x0 V . . .  V x~-i V x~+l V . . .  V x,~-i for some 0 < i < n ;  otherwise it is said to be noncancelable. 

A totally local Fitting class ~ is said to be l °°-irreducible [2] if the class ~ cannot  be represented in 
the form ~ = v°°(~i I i E I ) ,  where {~i [ i E I} is the set of all proper totally local Fitting subclasses 
in ~.  

C o r o l l a r y  2. Let ~ be a solvable singly generated totally local Fitting class. Then  ~ has a unique 
representation in the form of  an noncancelable union ~1V °°'" "V°° ~t o /some its totally.local l °° -irreducible 
Fitting subclasses ~1, . . . , ~ . 

Proof .  By Corollary 13 to Theorem 9 in [16, Chap. II], to prove this corollary, it suffices to show that  
the lattice L °° (~) of all totally local Fitting subclasses of an arbitrary solvable singly generated totally 
local Fitting class 3 = lc¢ fit G is finite. Let us perform induction on the nilpotent length of the group G. 

If l(G) = 1, then any nonidentity totally local Fitting subclass in 3 is of the form 9~,~, where 7r C 7r(3). 
Hence, there are only finitely many totally local Fitting subclasses of 5. 

Let l(G) > 1, and let the lattice L°°(Ic¢ fitA) be finite for any totally local Fi t t ing class of the form 
l°°fi tA, where l(A) < l(G).  Let 9X be an arbitrary totally local Fitting subclass in 3,  and let m 
and / be the minimal l ¢¢-valued H-functions of the classes ffJ~ and 3,  respectively. Then it follows from 
Lemnla 1 that m < / .  Moreover, by the same lemma, for any p E 7r(~) we have the relation 

f(P) = l°° fit(FP(A) I A E ~). 

Since l (FP(G)) < l(G), it follows that tim lattice L°° ( f (p ) )  is finite by the induction assumption. Since 
the set 7r(3) is also finite, it follows that ~ has only finitely many totally local Fi t t ing subclasses. This 
proves the corollary. [] 

For any two totally local Fitting classes ~ and Y), where 9X C_ .~, by ~/°°gX we denote [6] the lattice 
of totally local Fitting classes between ffYt and Y). 

Since any distributive lattice is modular, the above theorem implies the following assertion. 

C o r o l l a r y  3. For any two solvable totally local Fit t ing classes fO~ and Y), the fol lowing lattice isomor- 
phism exists: 

v °° s /oos  n 
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Corol lary  4 [6, Theorem 4.1.7]. The lattice of all solvable totally local formations is distributive. 

ProoL Let us show that any solvable totally local Fitting class ~ is hereditary. Without loss of 
generality, we may assume that ~ -- l °° fit G for some solvable group G. If the group G is nilpotent, 
then the assertion is obvious. Assume that the nilpotent length t of G exceeds one. Then, if f is the 
minimal /°°-valued H-function for the class ~,  then, since I(FP(G)) < t ,  it follows from the induction 
a~mm~ption that, for any p E 7r(G), the Fitting class f (p )  = l °° fit(FP(G)) is hereditary. Hence, the class 
is hereditary, trod therefore, by the results in [17], the class ~ is a totally local formation. Therefore, each 
solvable totally local Fitting class is a totally local formation. 

Arguing in tile same way, we can readily see that  each solvable totally local formation is a hereditary 
Fitting class. However, by the theorem in [7], any solvable hereditary Fitting class is a totally local Fitting 
class. Hence, any solvable totally local formation is a totally local Fitting class. 

Thus, the lattices L°°(®) and Loo(®) coincide. Therefore, by the above theorem, the lattice of all 
solvable totally local formations is distributive. This proves the corollary. [] 

Tile technique of proofs and the argxunents suggested in the present paper heavily depend on the solv- 
ability condition. As far as the nonsolvable case is coucerned, we can say nothing even on tile modularity 
of the lattice of all totally local Fitting classes. 

Quest ion.  Is the lattice of all totally local Fitt ing classes distributive (or at least modular)? 

A similar question for totally local formations was presented in [6, Question 4.2.14]. 
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