Министерство образования Республики Беларусь Учреждение образования «Витебский государственный университет им. П.М. Машерова» Кафедра общей физики и астрономии

Молекулярная физика и термодинамика в таблицах

Пособие

Витебск УО «ВГУ им. П.М. Машерова» 2011 УДК 539.19(075.8)+536.7(075.8) ББК 22.36я73+22.317.1я73 М75

M75

Печатается по решению научно-методического совета учреждения образования «Витебский государственный университет им. П.М. Машерова». Протокол № 6 от 24.10.2011 г.

Авторы-составители: доцент кафедры общей физики и астрономии УО «ВГУ им. П.М. Машерова», кандидат технических наук В.П. Яковлев; доцент кафедры общей физики и астрономии УО «ВГУ им. П.М. Машерова», кандидат физикоматематических наук Ф.П. Коршиков; учитель физики и астрономии УО «ГОСШ №11 г. Витебска» А.Л. Григорович; студентка 4 курса физического факультета УО «ВГУ им. П.М. Машерова» Д.А. Семенова

Рецент: доцент кафедры инженерной физики УО «ВГУ им. П.М.Машерова», кандидат технических наук в.И. Жидкевич

Молекулярная физика и термодинамика в таблицах : пособие / авт.-сост. : В.П. Яковлев [и др.]. – Витебск : УО «ВГУ им. П.М. Машерова», 2011. – 50 с.

Издание подготовлено в соответствии с учебной программой по дисциплине «Молекулярная физика и термодинамика» для специальности 1-31 04 01 «Физика (по направлениям)». Издание предназначено для студентов физических специальностей.

УДК 539.19(075.8)+536.7(075.8) ББК 22.36я73+22.317.1я73

© Яковлев В.П. [и др.], 2011 © УО «ВГУ им. П.М. Машерова», 2011

Содержание

Введение	5
Основы молекулярно-кинетической теории газов	
Относительная атомная (молекулярная) масса	6
Число Авогадро. Молярная масса	7
Распределение энергии по степеням свободы	8
Основное уравнение кинетической теории газов	9
Средняя кинетическая энергия движения молекулы	10
Температура	11
Шкала Кельвина	12
Газовые законы	13
Изопроцессы	14
Молярная масса смеси газов	15
Распределение Максвелла	
Барометрическая формула	16
Опыт Перрена по определению числа Авогадро	
Распределение Максвелла	
Процессы переноса	
Опыт Штерна	19
Характерные скорости молекул	20
Явления переноса	21
Эффективное сечение соударения и эффективный диаметр	
молекулы	22
Явления переноса в газах	23
Первое начало термодинамики	
Первое начало термодинамики	24
Применение первого начала термодинамики к изопроцессам	25
Адиабатный процесс	
Работа при адибатном процессе	27
Теплоемкость идеальных газов	
Теплоемкость смеси газов	29
Энтропия	30
Основное уравнение термодинамики	
Энтропия и её изменение – функция параметров системы T, p, V	32
Изменение энтропии изопроцессов	
Второе начало термодинамики	
Второе начало термодинамики	34
Теоремы Карно	
Схема работы холодильной машины	
Цикл Карно	
Цикл четырехтактного двигателя Дизеля	

Реальные газы	
Реальные газы (уравнение Ван-дер-Ваальса)	39
Критическое состояние вещества	40
Приведенное уравнение Ван-дер-Ваальса	41
Внутренняя энергия реальных газов	42
Фазовые переходы	
Фазовые переходы	43
Жидкости	
Поверхностное натяжение	44
Капиллярные явления	45
Твердые тела	
Кристаллические решетки	46
Кристаллические классы и типы решеток	
Классическая теория теплоемкости твердых тел	
Основные представления квантовой теории теплоемкости	
Литература	50

Введение

Таблицы по курсу «Молекулярная физика» составлены в соответствии с учебной программой для специальности 1–31 04 01 «Физика» и охватывает основные вопросы по темам: основы молекулярнокинетической теории газов, распределение Максвелла, процессы переноса, первое и второе начала термодинамики, реальные газы, фазовые переходы, жидкости и твердые тела.

Цель пособия — расширить понимание молекулярных физических явлений и облегчить усвоение теоретического материала.

Авторы стремились при рассмотрении законов не ограничиваться лишь итоговой формулой, но и отражать подходы к их выводу. При этом таблицы существенно облегчают понимание логических связей, применяемых в математических соотношениях.

Как показывает опыт работы со студентами на практических занятиях, таблицы оказывают существенную помощь при решении задач по физике. Как известно, именно решение задач вызывает наибольшие затруднения у изучающих физику. Для решения задач, как правило, недостаточно формального знания физических законов. В некоторых случаях необходимо знание специальных методов (приемов), общих для решения определенных групп задач. Сведенный компактно в единую таблицу материал по изучаемой теме позволяет лучше ориентироваться в многообразии формул в соответствии с условиями задач и находить правильные решения.

Применение таблиц и схем при изучении физики является дополнительным источником информации, когда основной материал уже изучен, но также может успешно применяться непосредственно при первоначальном ознакомлении с новой темой. Эти материалы могут эффективно использоваться при индивидуальной самостоятельной работе для повторения материала и решения задач.

Относительная атомная (молекулярная) масса

- Масса атомов (молекул) характеризуется безразмерными величинами, которые называются:
 - относительная атомная масса A_r
 - относительная молекулярная масса M_r
- В качестве атомной единичной массы (а.е.м.) $m_{\rm eq}$ принимается 1/12 массы атома 12 С (изотоп углерода с массовым числом 12)

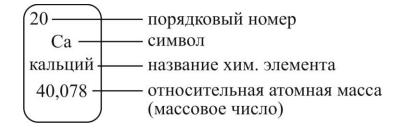
$$m_{\rm e,d} = \frac{1}{12} \, m_{
m atoma^{12}C} = 1,66 \cdot 10^{-27} \, {
m K}\Gamma$$

• Относительная атомная масса A_r химического элемента — отношение массы этого элемента к 1/12 массы атома $^{12}{\rm C}$

$$A_r = \frac{m_{\text{атома}}}{m_{\text{ед}}} = \frac{\text{масса атома}}{\text{масса}} \cdot 12 \implies m_{\text{атома}} = m_{\text{ед}} \cdot A_r$$

• Относительная молекулярная масса M_r

$$M_r = \frac{m_{\text{мол-лы}}}{m_{\text{ед}}} = \frac{\text{масса молекулы}}{\text{масса}} \cdot 12 \Rightarrow m_{\text{мол-лы}} = m_{\text{ед}} \cdot M_r$$



Число Авогадро. Молярная масса

- Количество вещества характеризуется числом его структурных элементов, которое выражается в молях
- **Моль** количество вещества, в котором содержится число частиц (атомов, молекул, ионов) равное числу атомов в 0,012 кг изотопа углерода 12 С

Число частиц, содержащихся в моле вещества, называется **числом Авогадро**

$$N_A = rac{ ext{масса моля углерода}}{ ext{масса атома углерода}} = rac{0.012 rac{ ext{КГ}}{ ext{моль}}}{12 \cdot m_{ ext{ед}} ext{ кГ}} = rac{10^{-3}}{m_{ ext{ед}}} ext{ моль}^{-1} =$$

$$= rac{10^{-3}}{1.66 \cdot 10^{-27}} ext{ моль}^{-1} = 6.02 \cdot 10^{23} ext{ моль}^{-1}$$

$$N_A = 6.02 \cdot 10^{23} ext{ моль}^{-1}$$

$$N_A = rac{10^{-3}}{m_{ ext{ед}}} \Rightarrow m_{ ext{ед}} \cdot N_A = 10^{-3} rac{ ext{КГ}}{ ext{моль}}$$

• Молярная масса – это масса моля вещества

$$\mu = m_{\text{мол-лы}} \cdot N_A = m_{\text{ед}} \cdot M_r \cdot N_A = M_r (m_{\text{ед}} \cdot N_A) = M_r \cdot 10^{-3} \frac{\text{K}\Gamma}{\text{моль}}$$

$$\mu = M_r \cdot 10^{-3} \frac{\text{K}\Gamma}{\text{МОЛЬ}}$$

$$\mu = A_r \cdot 10^{-3} \ \frac{\text{K}\Gamma}{\text{МОЛЬ}}$$

 $m_{ ext{мол-лы}} = m_{ ext{ед}} M_r$ $m_{ ext{мол-лы}} = \mu/N_A$

• Связь числа молей ν с числом N молекул некоторого количества вещества _____

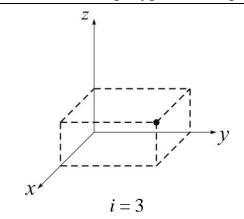
$$\boxed{ \nu = \frac{N}{N_A} = \frac{N \, m_{\text{\tiny{MOJ-ЛЫ}}}}{N_A \, m_{\text{\tiny{MOJ-ЛЫ}}}} = \frac{m}{\mu} } \Rightarrow \boxed{ \frac{N}{N_A} = \frac{m}{\mu} } \Rightarrow \boxed{ N = \frac{m}{\mu} \, N_A }$$

m – масса вещества

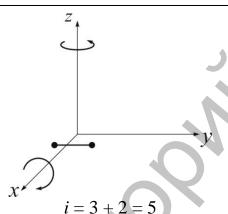
∞

Распределение энергии по степеням свободы

Числом степеней свободы молекулы называется число независимых координат, определяющих ее положение и конфигурацию в пространстве



3 ст. поступательного движения



3 ст. поступательного движения 2 ст. вращательного движения

$$i = 3 + 3 = 6$$

3 ст. поступательного движения 3 ст. вращательного движения

He (
$$\mu = 4 \cdot 10^{-3} \frac{\text{K}\Gamma}{\text{МОЛЬ}}$$
)
Ar ($\mu = 40 \cdot 10^{-3} \frac{\text{K}\Gamma}{\text{МОЛЬ}}$)

Hg (
$$\mu = 200 \cdot 10^{-3} \frac{\text{K}\Gamma}{\text{МОЛЬ}}$$
)

Ne (
$$\mu = 20 \cdot 10^{-3} \frac{\text{K}\Gamma}{\text{МОЛЬ}}$$
)

$$H_2 (\mu = 2 \cdot 10^{-3} \frac{K\Gamma}{MOЛЬ})$$

$$N_2 (\mu = 28 \cdot 10^{-3} \frac{\mathrm{K}\Gamma}{\mathrm{MOЛЬ}})$$

$$O_2 (\mu = 32 \cdot 10^{-3} \frac{K\Gamma}{MOJIb})$$

Воздух (
$$\mu = 29 \cdot 10^{-3} \frac{\text{кг}}{\text{моль}}$$
)

$$CO_2 (\mu = 44 \cdot 10^{-3} \frac{K\Gamma}{MOЛЬ})$$

$$CS_2 (\mu = 76 \cdot 10^{-3} \frac{K\Gamma}{MOJIb})$$

$$H_2O (\mu = 18 \cdot 10^{-3} \frac{K\Gamma}{MOJIb})$$

$$CH_4 (\mu = 16 \cdot 10^{-3} \frac{K\Gamma}{MOЛЬ})$$

Основное уравнение кинетической теории газов

$$p = \frac{1}{3} m_0 n \overline{v}_{KB}^2$$

$$p = \frac{2}{3} n \frac{m_0 \overline{v}_{KB}^2}{2}$$

$$m_0 \overline{v}_{KB}^2 = \frac{3}{2} kT$$

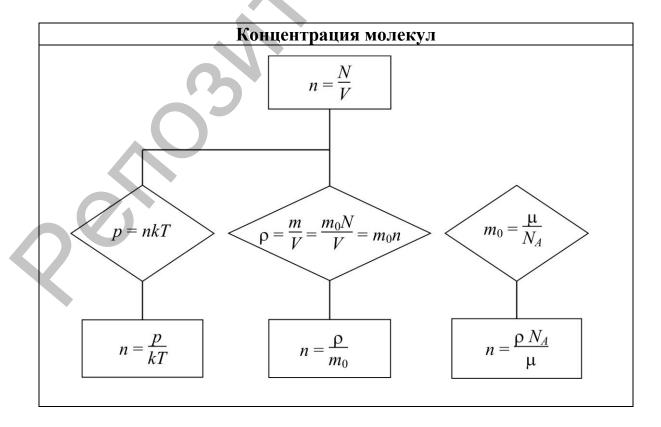
$$p = nkT$$

• Средняя квадратичная скорость молекул

$$\overline{v}_{KB} = \sqrt{\frac{v_1^2 + v_2^2 + \dots + v_N^2}{N}}$$

 v_i – скорость i-й частицы (i = 1, 2, ..., N)

N — число частиц



Средняя кинетическая энергия движения молекулы

- Закон равномерного распределения энергии по степеням свободы: на каждую степень свободы движения молекулы в среднем приходится энергия, равная $\frac{1}{2}kT$
- ullet Средняя кинетическая энергия молекулы при поступательном движении (i=3)

$$< E_{\kappa 0}^{\text{пост}} > = \frac{m_0 \overline{\nu}_{\kappa B}^2}{2} = \frac{3}{2} kT$$

ullet Общая кинетическая энергия N молекул идеального газа (i=3)

$$\langle E_{\kappa}^{\text{пост}} \rangle = \langle E_{\kappa 0}^{\text{пост}} \rangle N = \frac{3}{2} kT \cdot N$$

Внутренняя энергия моля идеального газа

ullet Внутренняя энергия моля идеального газа (i=3)

$$U_{\mu} = \frac{3}{2} kT N_{A}$$

$$kN_{A} = R$$

$$U_{\mu} = \frac{3}{2} RT$$

• Внутренняя энергия моля газа в общем виде

$$U_{\mu} = \frac{i}{2} RT$$

$$dU_{\mu} = \frac{i}{2} R dT$$

$$\frac{dU_{\mu}}{dT} = \frac{i}{2} R$$

$$\frac{dU_{\mu}}{dT} = \frac{i}{2} R$$

$$U \neq f(p, V)$$

• Внутренняя энергия произвольной массы газа

$$U = \frac{m}{\mu} \frac{i}{2} RT \qquad dU = \frac{m}{\mu} \frac{i}{2} R dT$$

10

Температура

- Температурой называется численное значение величины, с помощью которой характеризуется «нагретость» тела
- \bullet Точке кипения воды присваивается температура t_2 , а точке замерзания температура t_1 . Тогда градусом температуры называется величина

$$1^{\circ} = \frac{l_2 - l_1}{t_2 - t_1}$$

 l_2 и l_1 — термодинамические величины термометрического тела в точках кипения и замерзания воды соответственно (изменение длины ртутного столба)

Температура термометрического тела t

$$t = t_1 + \frac{l_t - l_1}{1^{\circ}}$$
 \Rightarrow $t = t_1 + \frac{l_t - l_1}{l_2 - l_1}(t_2 - t_1)$

 l_t – термометрическая величина при измеряемой «нагретости»

Эмпирические шкалы температур

 $\frac{ \text{Шкала Цельсия}}{t_2 = 100} \\ t_1 = 0 \\ t_{^{\circ}\text{C}} = \frac{l_t - l_1}{l_2 - l_1} \cdot 100$

 $\frac{\text{Шкала Фаренгейта}}{t_2 = 212}$ $t_1 = 32$ $t_F = 32 + \frac{l_t - l_1}{l_2 - l_1} \cdot 180$

* Рассматривается одно и то же термометрическое тело и одна и та же термодинамическая величина

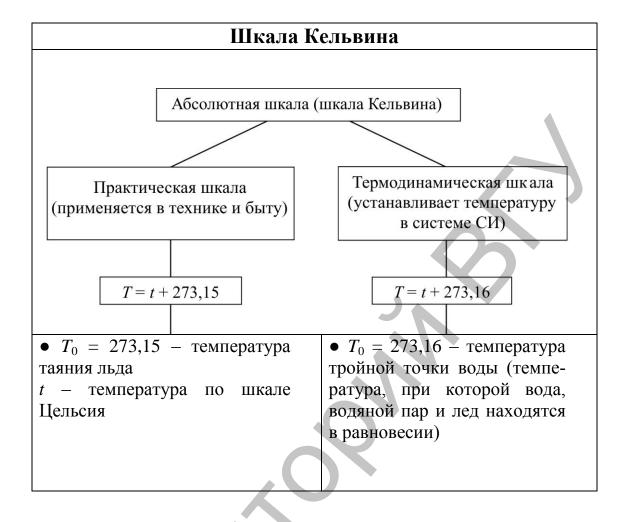
Формулы пересчета температур

11

$$t_R = 0.8t_{\rm ^{\circ}C}$$

$$t_F = 32 + 1.8t_{\rm ^{\circ}C}$$

• Пример. Выразить 40 °C по шкале Фаренгейта $t_F = 32 + 1,8 \\ t_{\rm C} = 32 + 1,8 \\ \cdot 40 = 32 + 72 = 104 \text{ F}$



Единица температуры в системе СИ

- 1 Кельвин равен 1/273,16 части температурного интервала от абсолютного нуля температуры до температуры тройной точки воды (обозначается 1 К)
- Так как температура тройной точки воды равна 0,01 °C, то размеры градуса в шкалах Цельсия и Кельвина одинаковы и любая температура может выражаться либо в градусах Цельсия (°C), либо в градусах Кельвина (К)
- Абсолютный нуль температуры недостижим (третье начало термодинамики); к абсолютному нулю температуры можно только асимптотически приблизиться (экспериментально получена $T = 1 \cdot 10^{-3} \text{ K}$)

Газовые законы

Закон Авогадро

• При одинаковых давлениях и температурах в равных объемах любого газа содержится одинаковое число молекул

$$pV = NkT$$

$$pV = N_1kT$$

$$pV = N_2kT$$

$$N_1 = N_2$$

Следствия:

• Моль любого газа при норм. условиях $T_0 = 273,15 \text{ K}$ и $p_0 = 1,01\cdot10^5$ Па занимает объем

$$V_{\mu} = \frac{RT_0}{p_0} \approx 22,4 \cdot 10^{-3} \, \frac{\text{м}^3}{\text{моль}}$$

• Число молекул в 1 м³ газа при нормальных условиях (число Лошмидта)

$$L = \frac{N_A}{V_{\mu}} \approx 2.7 \cdot 10^{25} \text{ m}^{-3}$$

Закон Дальтона

• Давление смеси газов равно сумме парциальных давлений ^{*} ее компонентов

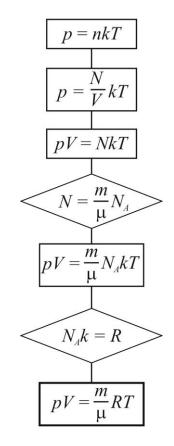
$$p = \frac{N_1}{V}kT + \frac{N_2}{V}kT + \dots + \frac{N_n}{V}kT$$

$$p = \frac{N_1}{V}kT + \frac{N_2}{V}kT + \dots + \frac{N_n}{V}kT$$

$$p = p_1 + p_2 \dots + p_n$$

* парциальное давление — это давление, которое оказывал бы этот газ, если бы только он один находился в сосуде, занятом смесью

Уравнение состояния идеального газа (уравнение Менделеева–Клапейрона)



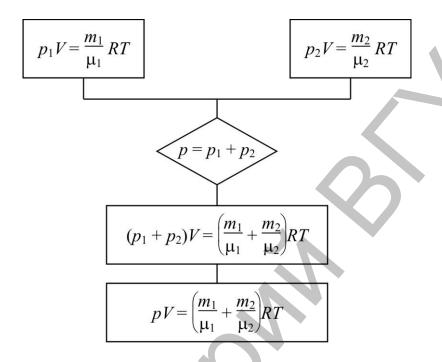
Изопроцессы

Процессы в газе постоянной массы (m = const), при которых один из трех параметров (p, V или T) остается неизменным

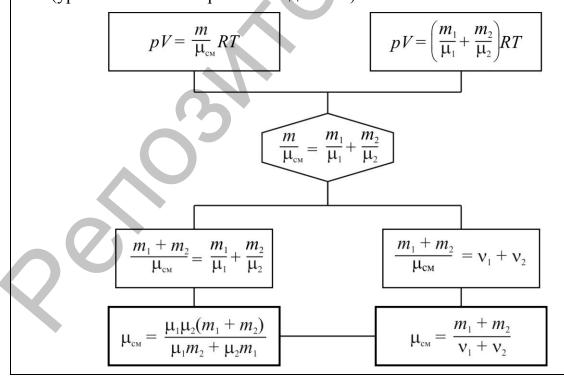
Изотермический Изобарный Изохорный процесс процесс процесс (V = const, m = const)(p = const, m = const)(T = const, m = const) $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} = \text{const}$ $\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} = \text{const}$ = const $\frac{V_1}{T_1} = \frac{V_2}{T_2} = \text{const}$ $\frac{p_1}{T_1} = \frac{p_2}{T_2} = \text{const}$ $p_1V_1 = p_1V_2 = \text{const}$ $\frac{V}{T} = \text{const}$ $\frac{p}{T}$ = const pV = constp T_2 pp TT T_2 T_1

Молярная масса смеси газов

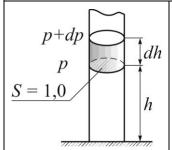
• Уравнение состояния для компонент, заключенных в объеме смеси



• Молярная масса должна удовлетворять уравнению газового состояния (уравнению Клапейрона–Менделеева)

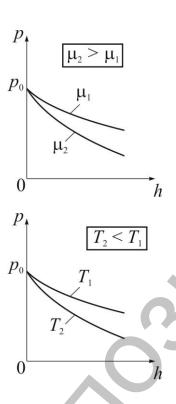


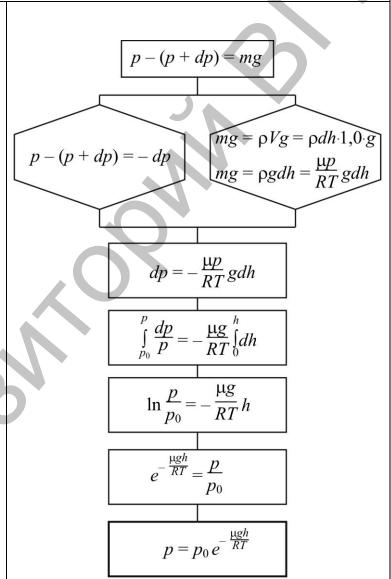
Барометрическая формула



p — давление на высоте h p+dp — давление на высоте h+dh

Атмосферное давление на высоте h обусловлено весом вышележащих слоев газа





• Барометрическая формула является приближенной, поскольку предполагается, что температура T по всей высоте воздушного столба одинаковая и ускорение свободного падения g не изменяется в пределах рассматриваемых высот

Опыт Перрена по определению числа Авогадро

Распределение Больцмана:

$$n = n_0 \exp\left(-\frac{mgx}{kT}\right)$$

Распределение Больцмана с учетом потери веса частицы по закону Архимеда:

$$n = n_0 \exp\left(-\frac{mg(1 - \rho_{xx}/\rho_{yy})}{kT}x\right)^*$$

$$^{*}G' = mg - V_{q}\rho_{x}g = mg - \frac{m}{\rho_{q}}\rho_{x}g = mg\left(1 - \frac{\rho_{x}}{\rho_{q}}\right)$$

$$\frac{n_1}{n_2} = \exp\left[-\frac{mg(1 - \rho_{xx}/\rho_{yy})}{kT}(x_1 - x_2)\right]$$

 n_1 и n_2 – измеренные концентрации частиц на высотах x_1 и x_2

$$\ln \frac{n_1}{n_2} = \frac{mg(1 - \rho_{xx}/\rho_{yy})}{kT} (x_2 - x_1)$$

$$k = \frac{mg(1 - \rho_{xx}/\rho_{yy}) (x_2 - x_1)}{T \ln(n_1/n_2)}$$

$$N_A = \frac{R}{k}$$

• Масса частицы *m* вычислялась несколькими экспериментальными и теоретическими методами по размерам частиц и их плотности

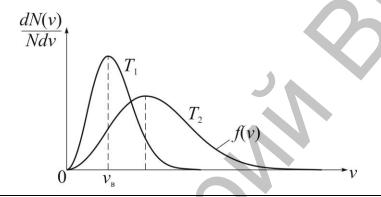
Распределение Максвелла

$$dN(v) = f(v)Ndv = N\left(\frac{m_0}{2\pi kT}\right)^{\frac{3}{2}} \exp\left(-\frac{m_0v^2}{2kT}\right) \cdot 4\pi v^2 dv$$

dN(v) — число молекул, скорости которых лежат в интервале от v до v+dv

N — общее число молекул

 m_0 — масса молекулы



Распределение Максвелла в приведенном виде (для относительных скоростей)

$$dN(u) = f(u)Ndu = \frac{4}{\sqrt{\pi}}N\exp(-u^2)u^2du$$

 $u = \frac{v}{v_{\rm B}}$ — относительная скорость

v — заданная скорость молекул

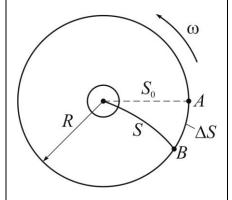
 $v_{\rm B} = \sqrt{\frac{2kT}{m_0}}$ — наивероятнейшая скорость молекул при данной температуре

 $du = \frac{dv}{v_{\rm B}}$ — величина интервала относительных скоростей, малая по сравнению со скоростью u

- Уравнение позволяет найти число молекул dN, относительные скорости которых лежат в интервалах от u до u + du
- Уравнение является универсальным, т.к. в таком виде функция распределения не зависит ни от рода газа, ни от температуры

Опыт Штерна

(экспериментальная проверка распределения Максвелла)



Два коаксиальных цилиндра, вдоль оси которых натянута платиновая нить, покрытая серебром. При нагреве электрическим током атомы серебра испарялись

Опыт проводился в два этапа:

• Прибор неподвижен. Атомы двигались прямолинейно и равномерно от нити к внутренней поверхности цилиндра (S_0) , где осаждались в виде узкой полоски (τ, A) .

Время прохождения атомами расстояния S_0 ($S_0 = R$):

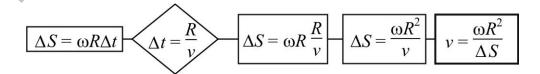
$$\Delta t = \frac{R}{v}$$

v — скорость атомов серебра $R = S_0$ — радиус внешнего цилиндра

• Прибор приводился во вращение с заданной угловой скоростью ω . След атомов серебра смещался по поверхности внешнего цилиндра на величину ΔS (т. B)

$$\Delta S = \omega R \Delta t$$

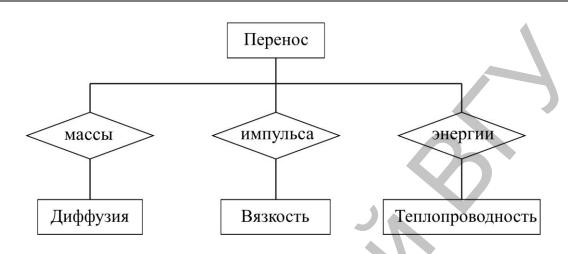
• Промежутки времени прохождения атомами расстояний S и S_0 (при вращении и неподвижном состоянии прибора) одинаковы. Исключив из уравнений Δt , получим:



Характерные скорости молекул				
$\overline{v}_{ ext{kB}}$ — средняя квадратичная скорость	v _в – наиболее вероятная (наивероятнейшая) скорость	$\overline{v}_{ m ap}$ — средняя арифметическая скорость		
основное уравнение кинетической теории газов $2 m_0 \overline{v}^2 = 1$	распределение молекул по скоростям (закон Максвелла)	средняя длина свободного про- бега молекул		
$p = \frac{2}{3}n\frac{m_0\overline{v}_{KB}^2}{2} = \frac{1}{3}\rho\overline{v}_{KB}^2$ $- \sqrt{3RT} \sqrt{3kT} \sqrt{3p}$	$\Delta N = \frac{4}{\sqrt{\pi}} N \exp(-u^2) u^2 \Delta u$ $v_{\rm B} = \sqrt{\frac{2RT}{u}} = \sqrt{\frac{2kT}{m_0}}$	$\overline{\lambda} = \frac{\overline{v}_{ap}}{\overline{z}} = \frac{1}{\sqrt{2}\pi d^2 n}$ $- \sqrt{8RT} \sqrt{8kT}$		
$\overline{v}_{KB} = \sqrt{\frac{3RT}{\mu}} = \sqrt{\frac{3kT}{m_0}} = \sqrt{\frac{3p}{\rho}}$ $\frac{m_0 \overline{v}_{KB}^2}{2} = \frac{3}{2} kT \Rightarrow v_{KB} = \frac{m_0 \overline{v}_{KB}^2}{2} \sqrt{\frac{3kT}{m_0}}$	$v_{\scriptscriptstyle \rm B}$ соответствует максимуму кривой	$\overline{v}_{ap} = \sqrt{\frac{8RT}{\pi\mu}} = \sqrt{\frac{8kT}{\pi m_0}}$ по распределению Максвелла		
$\begin{vmatrix} 2 & -2 & N & \rightarrow V_{KB} & -2 & \sqrt{m_0} \\ k & = \frac{R}{N_A} \\ m_0 & = \frac{\mu}{N_A} \end{vmatrix} \Rightarrow \frac{3kT}{m_0} = 3T \frac{R/N_A}{\mu/N_A} = \frac{3RT}{\mu}$	закона Максвелла. Находится из условия экстремума $\frac{df(v)}{dV(v)} = 0$ $\frac{d}{dv} \left[\frac{4}{\sqrt{\pi}} \left(\frac{m}{2kT} \right)^{3/2} v^2 \exp \left(\frac{-mv^2}{2kT} \right) \right] = 0$	$\overline{v}_{ap} = \frac{1}{N} \int_{0}^{\infty} Nf(v)v dN$ $Nf(v) = \frac{4}{\sqrt{\pi}} \frac{N}{v_{B}} \left(\frac{v}{v_{B}}\right)^{2} \exp\left(-\left(\frac{v}{v_{B}}\right)^{2}\right)$ $= 4 \int_{0}^{\infty} \left(-\left(\frac{v}{v_{B}}\right)^{2}\right) dv$		
$pV = \frac{m}{\mu}RT \Rightarrow \frac{p}{\rho} = \frac{1}{\mu}RT$	$\frac{d}{dv}\left(v^2 \exp\left(\frac{-mv^2}{2kT}\right)\right) = 0$ $2v \exp\left(\frac{-mv^2}{2kT}\right)\left(1 - \frac{mv^2}{2kT}\right) = 0; \left(1 - \frac{mv^2}{2kT}\right) = 0$	$\overline{v}_{ap} = \frac{4}{\sqrt{\pi}v_{B}^{3}} \int_{0}^{\infty} \exp\left(-\left(\frac{v}{v_{B}}\right)^{2}\right) v^{3} dv$ $\overline{v}_{ap} = \frac{2}{\sqrt{\pi}} v_{B} \int_{0}^{\infty} e^{-x} x dx; \int_{0}^{\infty} e^{-x} x dx = 1$		
$\overline{v}_{\text{KB}} = \sqrt{\frac{3RT}{\mu}} = \sqrt{\frac{3pV}{\mu}} = \sqrt{\frac{3p}{\rho}}$	$v_{\rm\scriptscriptstyle B} = \sqrt{\frac{2kT}{m_0}}$	$\overline{v}_{\rm ap} = \frac{2}{\sqrt{\pi}} v_{\rm B} = \frac{2}{\sqrt{\pi}} \sqrt{\frac{2kT}{m}} = \sqrt{\frac{8RT}{\pi m}}$		

Явления переноса

• Явления (процессы), обусловленные тепловым движением молекул связаны с переносом массы, импульса и энергии



• Среднее число столкновений в единицу времени

$$\overline{z} = \overline{v}_{\rm ap} \sqrt{2\pi d^2 n}$$

 $\overline{v}_{\rm ap}$ — средняя арифметическая скорость

d – эффективный диаметр молекулы

n – число молекул в единице объема

• Полное число столкновений в газе, содержащем N частиц, за 1 с

$$z = \frac{\overline{z}N}{2}$$

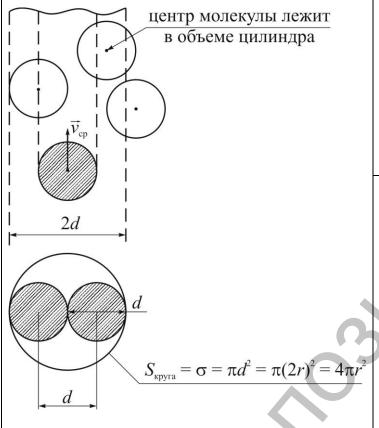
 $\overline{z}N$ – число столкновений всех молекул

 $\frac{\overline{z}N}{2}$ – в каждом столкновении участвуют 2 молекулы (пренебрегаем столкновениями 3-х и более молекул)

• Средняя длина пробега молекул

$$\overline{\lambda} = \frac{\overline{v}_{ap}}{\overline{z}} = \frac{1}{\sqrt{2\pi}d^2n}$$

Эффективное сечение соударения и эффективный диаметр молекулы



- σ эффективное сечение соударения. Это такая площадь, в которую должен попасть центр частицы чтобы произошло столкновение
- d эффективный диаметр молекулы минимальное расстояние, на которое сближаются при столкновении центры молекул

Диаметры молекул и атомов

Гелий (Не)	1,9·10 ⁻¹⁰ м	1,9 Å*
Водород (Н2)	$2,3\cdot10^{-10}$ M	2,3 Å
Кислород (О2)	$2,9 \cdot 10^{-10} \text{ M}$	2,9 Å
Азот (N ₂)	$3,1\cdot 10^{-10}$ M	3,1 Å
Аргон (Ar)	$2,9 \cdot 10^{-10} \text{ M}$	2,9 Å
Водяной пар (H_2O)	$2,6\cdot10^{-10}$ M	2,6 Å
Оксид углерода (СО)	$3,2\cdot10^{-10}$ M	3,2 Å
Углекислый газ (СО2)	$3,3\cdot10^{-10}$ M	3,3 Å
Хлор (Cl ₂)	$3,7\cdot10^{-10}$ M	3,7 Å

 $^{^*}$ ${A}$ – ангстрем (внесистемная единица длины, равная 10^{-10} м)

Явления переноса в газах Диффузия Вязкость Теплопроводность Масса ΔM , перенесенная за время Δt через Сила внутреннего трения F меж-Количество теплоты ΔQ , перенеду двумя слоями площадью ΔS , площадку ΔS , расположенную перпендикусенное за время Δt через площадлярно относительно оси х (закон Фика) движущимися с различными скоку ΔS , расположенную перпендиростями (закон Ньютона) кулярно оси x (закон **Фурье**) $\Delta p = -\eta \frac{\Delta v}{\Delta x} \Delta S \Delta t$ $\Delta Q = -\chi \frac{\Delta T}{\Delta x} \Delta S \Delta t$, Дж $\Delta M = -D \frac{\Delta \rho}{\Delta x} \Delta S \Delta t$, KT $\frac{\Delta v}{\Delta x}$ – градиент скорости течения $\frac{\Delta T}{\Delta x}$ – градиент температуры в на- $\frac{\Delta \rho}{\Lambda r}$ – градиент плотности в направлении, газа в направлении, перпендикуперпендикулярном к площадке ΔS ; правлении, перпендикулярном к D – коэффициент диффузии лярном к площадке ΔS ; площадке ΔS ; η – коэффициент внутреннего χ – коэффициент теплопроводнотрения (коэффициент динамиче-СТИ ской вязкости) $\chi = \frac{1}{3} \overline{v}_{ap} \overline{\lambda} c_V \rho , \frac{BT}{M \cdot K}$ $D = \frac{1}{3} \overline{v}_{ap} \overline{\lambda}$, M^2/c $\eta = \frac{1}{3} \overline{v}_{ap} \overline{\lambda} \rho$, $\Pi a \cdot c$ c_V — удельная теплоёмкость $\overline{v}_{\rm ap}$ – средняя арифметическая скорость; о – плотность газа при V = const $\overline{\lambda}$ – средняя длина свободного пробега молекул

Первое начало термодинамики

• Количество теплоты, полученное системой от окружающих тел, идет на изменение ее внутренней энергии и на совершение ею работы над внешними телами

$$Q = \Delta U + A$$

Q — сообщенное системе количество теплоты ΔU — изменение внутренней энергии системы A — совершенная системой работа

- Первое начало термодинамики для малого изменение системы $\boxed{\delta Q = dU + \delta A}$
- δQ бесконечно малое количество теплоты; dU бесконечно малое изменение внутренней энергии системы, δA элементарная работа
- Если же системе сообщается количество теплоты Q и над ней производится работа внешних сил A', а сама система работы не производит, то первый закон начала термодинамики записывается в виде:

$$\Delta U = A' + Q$$

В этом случае и сообщенная системе теплота, и совершенная над нею работа превращаются во внутреннюю энергию системы

Изменение внутренней энергии идеального газа

$$dU = \frac{i}{2} \frac{m}{\mu} R dT = \frac{m}{\mu} C_{\mu V} dT$$

 $C_{\mu V} = \frac{1}{2} R$ — значение молярной теплоемкости при постоянном объёме

Полная работа при изменении объёма газа

$$A = \int_{1}^{2} p dV; \quad p dV = \frac{m}{\mu} R dT$$

Применение первого начала термодинамики к изопроцессам

$$T = \text{const}$$

$$\left(\frac{p_1}{p_2} = \frac{V_2}{V_1}\right)$$

$$p = \text{const}$$

$$\left(\frac{V_1}{V_2} = \frac{T_1}{T_2}\right)$$

$$V = \text{const}$$

$$\left(\frac{T_2}{T_1} = \frac{p_2}{p_1}\right)$$

$$dQ = dU + pdV$$

Изменение внутренней энергии $dU = \frac{m}{U} C_V dT$

$$dU = 0$$
$$\Delta U = 0$$

$$dU = \frac{i}{2} \frac{m}{\mu} R dT$$

$$dU = \frac{i}{2} p dV$$

$$U = \frac{i}{2} \frac{m}{\mu} R (T_2 - T_1)$$

$$dU = \frac{i}{2} \frac{m}{\mu} R dT$$

$$dU = \frac{i}{2} \frac{m}{\mu} R dT$$

$$\Delta U = \frac{i}{2} \frac{m}{\mu} R (T_2 - T_1) =$$

$$= \frac{i}{2} \frac{p_1 V}{T_1} (T_2 - T_1) =$$

$$= \frac{i}{2} p_1 V \left(\frac{T_2}{T_1} - 1\right) =$$

$$= \frac{i}{2} p_1 V \left(\frac{p_2}{p_1} - 1\right)$$

Работа системы dA = pdV

$$A = \frac{m}{\mu} RT \ln \frac{V_2}{V_1}$$
$$A = \frac{m}{\mu} RT \ln \frac{p_1}{p_2}$$

$$A = p(V_2 - V_1)$$

$$A = \frac{m}{\mu} R(T_2 - T_1)$$

$$A = 0$$

Количество теплоты, сообщенное системе

$$dQ = dA$$

$$Q = A$$

$$dQ = dU + pdV =$$

$$= \frac{i}{2} \frac{m}{\mu} R dT + \frac{m}{\mu} R dT =$$

$$= \frac{m}{\mu} C_p dT$$

$$Q = \frac{m}{\mu} C_p (T_2 - T_1)$$

$$C_p = C_V + R = \frac{i+2}{2} R$$

$$dQ = dU = \frac{i}{2} \frac{m}{\mu} R(t)$$

$$C = \frac{i}{2} R$$

$$dQ = dU + pdV =$$

$$= \frac{i}{2} \frac{m}{\mu} R dT + \frac{m}{\mu} R dT =$$

$$= \frac{m}{\mu} C_p dT$$

$$Q = \frac{m}{\mu} C_p (T_2 - T_1)$$

$$Q = \frac{i}{\mu} \frac{m}{\mu} R (T_2 - T_1)$$

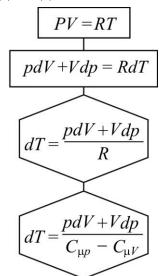
$$C_V = \frac{i}{2} R$$

Адиабатный процесс

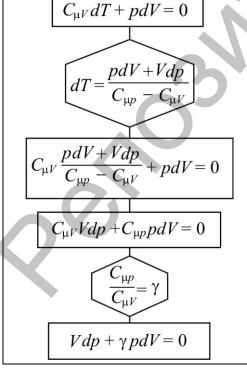
• Процесс, протекающий без теплообмена с внешней средой ($\delta Q = 0$)

$$dU + pdV = 0$$

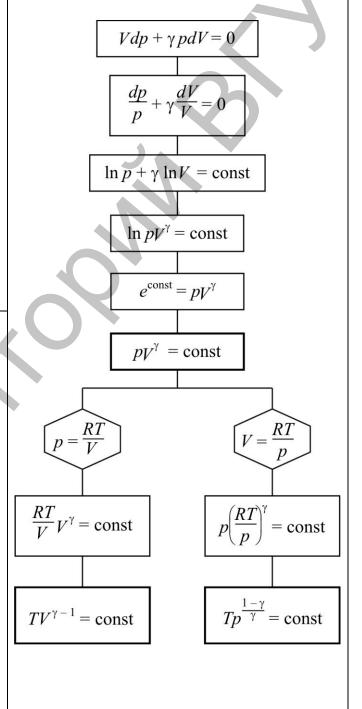
• Дифференцирование уравнения состояния идеального газа для одного моля



• Первое начало термодинамики



• Уравнение адиабаты (уравнения Пуассона)



Работа при адибатном процессе

Первое уравнение Пуассона:

$$p_1V_1^{\gamma} = p_2V_2^{\gamma}$$

$$A = \int_{V_{1}}^{V_{2}} p dV = \int_{V_{1}}^{V_{2}} \frac{p_{1}V_{1}^{\gamma}}{V^{\gamma}} dV = p_{1}V_{1}^{\gamma} \int_{V_{1}}^{V_{2}} \frac{dV}{V^{\gamma}}$$

$$A = p_{1}V_{1}^{\gamma} \frac{1}{\gamma - 1} \left(\frac{1}{V_{1}^{\gamma - 1}} - \frac{1}{V_{2}^{\gamma - 1}} \right)$$

$$A = \frac{p_{1}V_{1}^{\gamma}}{\gamma - 1} \frac{1}{V_{1}^{\gamma - 1}} \left[1 - \left(\frac{V_{1}}{V_{2}} \right)^{\gamma - 1} \right]$$

$$p_1 = \frac{RT_1}{V_1}$$

$$A = \frac{RT_1}{\gamma - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right]$$

Второе уравнение Пуассона:

$$T_1V_1^{\gamma-1} = T_2V_2^{\gamma-1}$$

$$A = \frac{RT_1}{\gamma - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right]$$

$$\left(\frac{V_1}{V_2}\right)^{\gamma-1} = \frac{T_2}{T_1}$$

$$A = \frac{RT_1}{\gamma - 1} \left(1 - \frac{T_2}{T_1} \right)$$
$$A = \frac{R}{\gamma - 1} (T_1 - T_2)$$

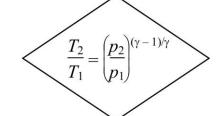
$$A = C_{\mu V}(T_1 - T_2)$$

Третье уравнение Пуассона:

$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{(\gamma - 1)/\gamma}$$

$$A = \frac{RT_1}{\gamma - 1} \left(1 - \frac{T_2}{T_1} \right)$$

$$C_{\mu\nu} = \frac{R}{\gamma - 1}$$



$$A = C_{\mu V} T_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{(\gamma - 1)/\gamma} \right]$$

Для газа массой т

$$A = \frac{m}{\mu} \frac{RT_1}{\gamma - 1} \left[1 - \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right]$$

$$A = \frac{m}{\mu} C_{\mu V} (T_1 - T_2)$$

$$A = \frac{m}{\mu} C_{\mu V} T_1 \left[1 - \left(\frac{p_2}{p_1} \right)^{(\gamma - 1)/\gamma} \right]$$

Теплоемкость идеальных газов

• **Теплоемкостью тела** называют количество тепла, которое нужно подвести к нему или отнять от него для изменения его температуры на 1 К

$$C = \frac{\delta Q}{dT}, \quad \frac{\Pi \kappa}{K}$$

• Молярная теплоемкость – теплоемкость моля вещества

$$C_{\mu} = \frac{\delta Q}{v dT}, \quad \frac{\mathcal{J}_{\mathsf{X}}}{\mathsf{MOЛ}_{\mathsf{E}} \cdot \mathsf{K}}$$

• Удельная теплоемкость – теплоемкость единицы массы вещества

$$c = \frac{\delta Q}{mdT}, \frac{Дж}{\kappa \Gamma \cdot K}$$

Удельная и молярная теплоемкости связаны соотношением:

$$c_{y_{A}} = \frac{C_{\mu}}{\mu}$$

Молярные теплоемкости $C_{\mu V}$ и $C_{\mu p}$

$\delta Q = dU + pdV$				
V = const	p = const			
$C_{\mu V} = \left(\frac{\delta Q}{dT}\right)_{V} = \left(\frac{dU}{dT}\right)_{V}$ $dU = C_{\mu V} dT$ $dU = \frac{i}{2}RdT$ $\Rightarrow C_{\mu V} = \frac{i}{2}R$	$C_{\mu p} = \left(\frac{\delta Q}{dT}\right)_{p} = \left(\frac{dU}{dT}\right)_{p} + \left(\frac{pdV}{dT}\right)_{p}$ $C_{\mu p} = \frac{dU}{dT} + R$ $C_{\mu p} = \frac{i}{2}R + R = \frac{i+2}{2}R$			

$C_{\mu p} = C_{\mu V} + R$ – уравнение Майера

Удельные теплоемкости c_V и c_p

$$c_V = \frac{C_{\mu V}}{\mu} = \frac{i}{2} \frac{R}{\mu}$$

$$c_p = \frac{C_{\mu p}}{\mu} = \frac{i+2}{2} \frac{R}{\mu}$$

$$c_p = c_V + \frac{R}{\mu}$$

Теплоемкость смеси газов

• удельная теплоёмкость смеси

$$c_{cm} = \frac{c_{1}m_{1} + c_{2}m_{2} + \dots + c_{n}m_{n}}{m_{1} + m_{2} + \dots + m_{n}}$$
$$c_{cm} = \frac{\sum_{i=1}^{n} c_{i}m_{i}}{\sum_{i=1}^{n} m_{i}}, \frac{\Pi M}{K \Gamma \cdot K}$$

• молярная теплоёмкость смеси

$$c_{\text{\tiny CM}} = \frac{c_{\text{\tiny 1}} m_1 + c_{\text{\tiny 2}} m_2 + \ldots + c_{\text{\tiny n}} m_n}{m_1 + m_2 + \ldots + m_n}$$

$$c_{\text{\tiny CM}} = \frac{\sum_{i=1}^{n} c_i m_i}{\sum_{i=1}^{n} m_i}, \frac{\Pi \mathbf{x}}{\mathbf{k} \mathbf{\Gamma} \cdot \mathbf{K}}$$

$$C_{\mu_{\text{\tiny CM}}} = \frac{\sum_{i=1}^{n} C_{\mu_i} \mathbf{v}_i}{\sum_{i=1}^{n} \mathbf{v}_i}, \frac{\Pi \mathbf{x}}{\mathbf{M} \mathbf{O} \mathbf{J} \mathbf{b} \cdot \mathbf{K}}$$

для смеси из двух компонентов

• удельная теплоёмкость смеси

$$c_{\rm cm} = \frac{c_1 m_1 + c_2 m_2}{m_1 + m_2}$$

• молярная теплоемкость сме-

$$C_{\mu \text{cM}} = \frac{C_{\mu 1} v_1 + C_{\mu 2} v_2}{v_2 + v_2}$$

$$C_{\mu \text{cM}} = \frac{C_{\mu 1} \frac{m_1}{\mu_1} + C_{\mu 2} \frac{m_2}{\mu_2}}{\frac{m_1}{\mu_1} + \frac{m_2}{\mu_2}}$$

• удельная теплоёмкость смеси при постоянном объёме

$$c_{V_{\text{CM}}} = \frac{c_{V_1} m_1 + c_{V_2} m_2}{m_1 + m_2} =$$

$$= \frac{\frac{i_1}{2} \frac{R}{\mu_1} m_1 + \frac{i_2}{2} \frac{R}{\mu_2} m_2}{m_1 + m_2} =$$

$$c_{V_{\text{CM}}} = \frac{R}{2(m_1 + m_2)} (i_1 v_1 + i_2 v_2)$$

молярная теплоёмкость при постоянном объёме

$$C_{\mu V_{\text{cM}}} = \frac{C_{\mu V_1} \nu_1 + C_{\mu V_2} \nu_2}{\nu_1 + \nu_2} =$$

$$= \frac{\frac{i_1}{2} R \nu_1 + \frac{i_1}{2} R \nu_1}{\nu_1 + \nu_2}$$

$$C_{\mu V_{\text{cM}}} = \frac{R}{2(\nu_1 + \nu_2)} (i_1 \nu_1 + i_2 \nu_2)$$

• удельная теплоёмкость при постоянном давлении

$$c_{p_{\text{cM}}} = \frac{c_{p_1} m_1 + c_{p_2} m_2}{m_1 + m_2} =$$

$$= \frac{\frac{i_1 + 2}{2} \frac{R}{\mu_1} m_1 + \frac{i_2 + 2}{2} \frac{R}{\mu_2} m_2}{m_1 + m_2}$$

$$c_{p_{\text{cM}}} = R \frac{(i_1 + 2)\nu_1 + (i_2 + 2)\nu_2}{2(m_1 + m_2)}$$

• молярная теплоёмкость при постоянном давлении

$$C_{\mu V_{\text{cm}}} = \frac{C_{\mu V_1} v_1 + C_{\mu V_2} v_2}{v_1 + v_2} =$$

$$= \frac{\frac{i_1 + 2}{2} R v_1 + \frac{i_2 + 2}{2} R v_2}{v_1 + v_2}$$

$$C_{\mu V_{\text{cm}}} = R \frac{(i_1 + 2) v_1 + (i_2 + 2) v_2}{2(v_1 + v_2)}$$

Энтропия

• Изменение (приращение) энтропии тела в любом обратимом процессе, переводящем его из состояния A в состояние B,

$$S_A - S_B = \int_A^B \frac{\delta Q}{T}$$

 δQ — элементарное количество теплоты, полученное телом при температуре T (если тело отдает тепло, то перед величиной δQ следует ставить знак минус)

 $\frac{\delta Q}{T}$ — элементарная приведенная теплота, которая при делении на T является полным дифференциалом некоторой функции S системы

• Энтропия замкнутой системы при любых происходящих в ней процессах возрастает при необратимых процессах ($\Delta S > 0$) и остаётся постоянной в случае обратных процессов ($\Delta S = 0$)

$$\Delta S \ge 0$$

Формула Больцмана

(статический смысл второго начала термодинамики)

$$S = k \ln W$$

k – постоянная Больцмана

W — термодинамическая вероятность состояния системы — число способов, которыми может быть реализовано данное состояние макросистемы ($W \ge 1$)

ullet S и W имеют максимальное значение в состоянии равновесия, а переход всякой системы к равновесию сопровождается ростом S и W

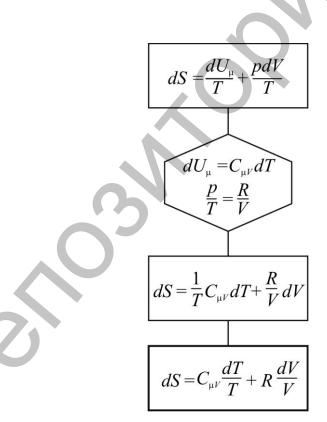
Основное уравнение термодинамики

$$\frac{\delta Q}{T} = dS \qquad \Rightarrow \qquad \delta Q = TdS$$

$$TdS = dU + pdV \implies dS = \frac{dU + pdV}{T}$$

• уравнение называется основным уравнением термодинамики, так как в нем объединены формулы первого и второго законов

Изменение энтропии идеального газа



Энтропия и её изменение – функция параметров системы T, p, V

$$\Delta S = f(T, V)$$

$$dS = C_{\mu V} \frac{dT}{T} + R \frac{dV}{V} \implies S = C_{\mu V} \ln T + R \ln V$$

$$S_2 - S_1 = C_{\mu V} \ln \frac{T_2}{T_1} + R \ln \frac{V_2}{V_1}$$

$$\Delta S = f(T, p)$$

$$\begin{array}{c|c} p_2V_2 = RT_2 \\ p_1V_1 = RT_1 \end{array} \Rightarrow \begin{array}{c|c} V_2 \\ \hline V_1 = T_2p_1 \\ \hline T_1p_2 \end{array}$$

$$S_2 - S_1 = C_{\mu V} \ln \frac{T_2}{T_1} + R \ln \frac{T_2}{T_1} + R \ln \frac{p_1}{p_2}$$

$$S_2 - S_1 = \ln \frac{T_2}{T_1} (C_{\mu V} + R) + R \ln \frac{p_1}{p_2}$$

$$S_2 - S_1 = C_{\mu p} \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1}$$

$$\Delta S = f(P, V)$$

$$\begin{vmatrix}
P_2V_2 = RT_2 \\
P_1V_1 = RT_1
\end{vmatrix} \Rightarrow \begin{vmatrix}
T_2 \\
T_1
\end{vmatrix} = \frac{p_2V_2}{p_1V_1}$$

$$S_2 - S_1 = C_{\mu V} \ln \frac{p_2}{p_1} + C_{\mu p} \ln \frac{V_2}{V_1}$$

Изменение энтропии изопроцессов для 1 моля

• p = const (изобарный процесс): $\delta Q = C_{\mu p} dT$

$$S_2 - S_1 = \int_1^2 \frac{\delta Q}{T} = C_{\mu p} \int_1^2 \frac{dT}{T} = C_{\mu p} \ln \frac{T_2}{T_1} = C_{\mu p} \ln \frac{V_2}{V_1}$$

• V = const (изохорный процесс): $dQ = C_{\mu V} dT$

$$S_2 - S_1 = \int_1^2 \frac{\delta Q}{T} = C_{\mu V} \int_1^2 \frac{dT}{T} = C_{\mu V} \ln \frac{T_2}{T_1} = C_{\mu V} \ln \frac{p_2}{p_1}$$

• T = const (изотермический процесс): $\delta Q = \delta A = pdV = RT \frac{dV}{V}$

$$S_2 - S_1 = \int\limits_1^2 rac{\delta Q}{T} = R \ln rac{V_2}{V_1}$$
 или $S_2 - S_1 = \int\limits_1^2 rac{\delta Q}{T} = R \ln rac{p_1}{p_2}$

Вероятность пребывания двух тел при разных температурах T_1 и T_2

$$\Delta S = S_2 - S_1 = k \ln \frac{W_2}{W_1}$$

$$\frac{W_2}{W_1} = \exp\left(\frac{\Delta S}{k}\right)$$

Второе начало термодинамики

Формулировки

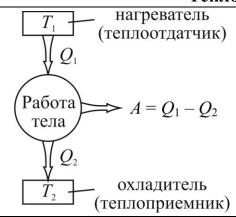
Рудольф Клаузиус

Томсон Уильям лорд Кельвин

Невозможен круговой процесс, единственным результатом которого является передача теплоты от менее нагретого тела к более нагретому

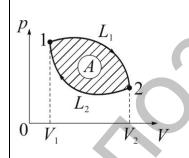
Невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу

Тепловая машина



- \bullet Это система, которая совершает круговой процесс (цикл) и преобразует количество теплоты Q в работу
- Часть теплоты, полученной рабочим телом от нагревателя, превращается в работу, а часть теплоты не используется и передается холодильнику

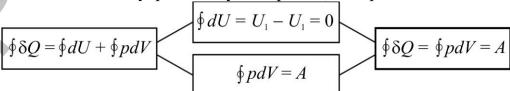
Циклические процессы



- Это процесс, начало и конец которого совпадают
- Цикл изображается замкнутой кривой. Может происходить по часовой стрелке или против часовой стрелки
- Работа цикла

$$A = \int_{(L_1)}^{2} p dV + \int_{(L_2)}^{2} p dV^*$$

* Работа цикла равна сумме двух интегралов и определяется площадью, заключенной внутри замкнутой кривой, изображающей цикл



• Вся работа, совершенная за цикл, получается за счет количества теплоты, которое поступило в систему. Это теплота в части цикла поступает в систему, а в части — выходит из нее

Теоремы Карно

КПД цикла

$$A = \oint p dV = \oint \delta Q$$

$$A = \oint \delta Q = \int_{(+)}^{(+)} \delta Q + \int_{(-)}^{(-)} \delta Q = Q^{(+)} + Q^{(-)} *$$

$$\eta = \frac{A}{Q^{(+)}} = \frac{Q^{(+)} + Q^{(-)}}{Q^{(+)}} = 1 + \frac{Q^{(-)}}{Q^{(+)}}$$

- * $\int_{(+)}$ и $\int_{(-)}^{(-)}$ интегралы по тем участкам цикла, где соответственно теплота втекает в машину $Q^{(+)}$ и вытекает из нее $Q^{(-)}$
- ullet КПД характеризует эффективность тепловой машины, определяемый как отношение произведенной машинной работы A за один цикл к количеству теплоты $Q^{(+)}$, полученному машиной от термостатов

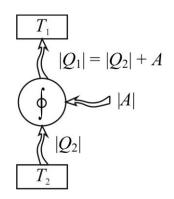
Теоремы Карно

- <u>Первая теорема</u>: тепловая машина, работающая при данных значениях температур нагревателя и холодильника, не может иметь КПД больший, чем машина, работающая по обратимому циклу Карно при тех же значениях температур нагревателя и холодильника
- Вторая теорема: КПД цикла Карно не зависит от рода рабочего тела, а только от температур нагревателя и холодильника

Холодильная машина и нагреватель

- При проходе цикла в обратном направлении машина не производит работы, а, наоборот, над машиной совершается работа. Эта работа превращается в теплоту, причем так, что некоторое количество теплоты берется от тела с более низкой температурой, к этой теплоте добавляется за счет работы эквивалентное количество и суммарное количество теплоты передается нагревателю.
- Тело с меньшей температурой, от которой отнимается теплота, охлаждается, а тело с большей температурой, которому отдается теплота, нагревается.
- Машина, работающая по обратному циклу, называется холодильной машиной или нагревателем в зависимости от назначения

Схема работы холодильной машины



При работе машина повышает температуру более нагретого тела и понижает температуру более холодного тела

Эффективность машины

• <u>Для холодильной машины</u> (холодильный коэффициент холодильной машины)

$$\varepsilon_1 = \frac{|Q_2|}{|A|} = \frac{T_2}{T_1 - T_2} = \frac{1}{\eta} - 1$$

 $|Q_2|$ — абсолютное значение количества теплоты, отнятое от охлаждаемого тела за цикл

Эффективность машины оценивается по способности понижения температуры тела с более низкой температурой T_2

• Для нагревателя (коэффициент нагревателя)

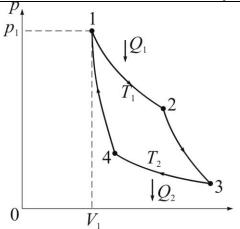
$$\varepsilon_2 = \frac{|Q_1|}{|A|} = \frac{T_1}{T_1 - T_2} = \frac{1}{1 - T_2/T_1} = \frac{1}{\eta}$$

 $|Q_1|$ – абсолютное значение количества теплоты, получаемое телом с большей температурой

Эффективность машины оценивается по способности повышения температуры тела с более высокой температурой T_1

Цикл Карно

Состоит из двух изотерм и двух адиабат



1-2 — изотермическое расширение при температуре T_1 2-3 — адиабатическое расширение с понижением температуры до T_2 3-4 — изотермическое сжатие при температуре T_2 4-1 — адиабатическое сжатие с ростом температуры до первоначального значения температуры T_1 $(p_1$ и $V_1)$

При контакте рабочего тела с нагревателем ($T_1 = {\rm const}$) рабочему телу сообщается теплота Q_1 , при контакте с холодильником ($T_2 = {\rm const}$) рабочее тело отдает ему количество теплоты Q_2

Работа на участках цикла

$$\bullet \ A_{12} = RT_1 \ln \frac{V_2}{V_1} = Q_1$$

$$T_1V_2^{\gamma-1} = T_2V_1^{\gamma-1} \Longrightarrow \left(\frac{V_2}{V_1}\right)^{\gamma-1} = \frac{T_2}{T_1}$$

$$\bullet A_{34} = RT_2 \ln \frac{V_4}{V_3} = -RT_2 \ln \frac{V_3}{V_4} = Q_2$$

$$\bullet A_{41} = \frac{RT_2}{\gamma - 1} \left[1 - \left(\frac{V_4}{V_1} \right)^{\gamma - 1} \right] = \frac{RT_2}{\gamma - 1} \left[1 - \frac{T_1}{T_2} \right] = \frac{R(T_2 - T_1)}{\gamma - 1} = -\frac{R(T_1 - T_2)}{\gamma - 1}$$

$$T_2V_4^{\gamma-1} = T_1V_1^{\gamma-1} \Longrightarrow \left(\frac{V_4}{V_1}\right)^{\gamma-1} = \frac{T_1}{T_2}$$

Общая работа, совершенная газом и над газом за цикл

$$A_{\Sigma} = A_{12} + A_{23} + A_{34} + A_{41} = A_{12} + A_{34} = RT_1 \ln \frac{V_2}{V_1} - RT_2 \ln \frac{V_3}{V_4}$$

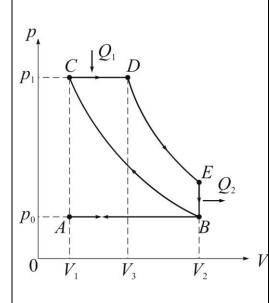
 $A_{\Sigma} = Q_1 - Q_2$ – в полезную работу преобразовывается лишь часть полученной теплоты, т.к. часть теплоты передается холодильнику

КПД цикла

$$\eta = \frac{A_{\Sigma}}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1}; \qquad \eta = \frac{T_1 - T_2}{T_1} = 1 - \frac{T_2}{T_1}$$

Цикл четырехтактного двигателя Дизеля

Состоит из двух адиабат, изобары и изохоры



AB — в цилиндр засасывается воздух $(p_0 = 1,01 \cdot 10^5 \text{ Па})$

BC — адиабатное сжатие до $p = p_1$ и увеличение температуры

C — впрыск топлива через форсунку и воспламенение в горячем воздухе CD — изобарическое расширение газа;

DE — адиабатическое расширение газа (газ совершает работу)

E — открытие выпускного клапана, рабочее тело соединяется с охладителем (атмосферным воздухом)

EB — падение давления до p_0

ВА – удаление газа из цилиндров

Работа цикла

 \bullet Количество тепла, выделившегося при сгорании топлива (на участке изобары CD),

$$Q_1 = \frac{m}{\mu} C_{\mu p} (T_2 - T_1)$$

 T_1 – температура в начале расширения

 T_2 – температура в конце расширения

• Количество тепла, отданного среде (на участке изохоры ЕВ),

$$Q_2 = \frac{m}{\mu} C_{\mu V} (T_3 - T_0)$$

 T_3 – температура в начале расширения

 T_0 – температура в конце расширения

• Работа цикла

$$A = Q_1 - Q_2 = \frac{m}{\mu} C_{\mu V} (\gamma (T_2 - T_1) - (T_3 - T_0))$$

 $\gamma = \frac{C_{\mu\nu}}{C_{\mu V}}$ – показатель адиабаты

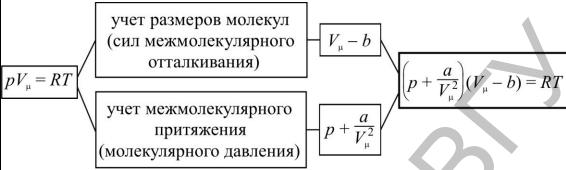
• КПД цикла

$$\eta = \frac{A}{Q_1} = 1 - \frac{1}{\gamma} \frac{T_3 - T_0}{T_2 - T_1}$$

38

Реальные газы (уравнение Ван-дер-Ваальса)

Для 1 моля



a и b — постоянные Ван-дер-Ваальса (значения которых различны для различных газов)

$$a, \frac{\text{Дж} \cdot \text{м}^3}{\text{моль}^2} = \frac{\text{м}^4 \cdot \text{H}}{\text{моль}^2} = \frac{\text{Па} \cdot \text{м}^6}{\text{моль}^2}$$

$$b, \frac{\text{M}^3}{\text{МОЛЬ}}$$

• Для произвольной массы газа

$$\boxed{\left(p + \frac{a}{V^2/v^2}\right)\left(\frac{V}{v} - b\right) = RT} \boxed{\left(p + v^2 \frac{a}{V^2}\right)(V - vb) = vRT}$$

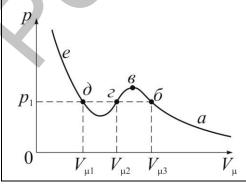
V- объем газа; $\frac{V}{v}-$ молярный объем газа; $v=\frac{m}{\mu}-$ число молей

Изотерма Ван-дер-Ваальса

Относительно объёма V уравнение Ван-дер-Ваальса является уравнением третьей степени:

Обе части этого равенства разделим на p, получим:

$$V_{\mu}^{3} - \left(p + \frac{RT}{p}\right)V_{\mu}^{2} + \frac{a}{p}V_{\mu} - \frac{ab}{p} = 0$$



Уравнение имеет три корня, фиксированным значениям T и p соответствуют три значения V_{μ}

аб – изотерма близка к изотерме идеального газа

 δ — начинается процесс конденсации

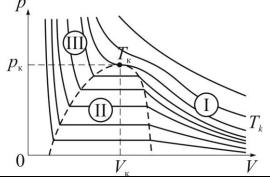
 ∂ – окончание процесса конденсации

 ∂e – жидкое состояние

Критическое состояние вещества

При некоторой температуре, характерной для каждого вещества, исчезает разница между жидким и газообразным состояниями. Это состояние называется критическим состоянием, и та температура, при которой оно наступает, носит название критической температуры

Экспериментальные изотермы реального газа



I – газообразная фазаII – двухфазное состояние (жидкость–насыщенный пар)

III – жидкая фаза

Связь критических параметров вещества с постоянными *а* и *b* уравнения Ван-дер-Ваальса

$$\left[\left(\frac{\partial p}{\partial V_{\mu}} \right)_{T} = 0 \right] - \left[\frac{2a}{V_{\mu}} - \frac{RT}{(V_{\mu} - b)^{2}} = 0 \right] - \left[\frac{2a}{V_{\mu}} - \frac{RT}{(V_{\mu} - b)^{2}} = 0 \right] - \left[\frac{\partial p}{\partial V_{\mu}} \right]_{T} = 0 - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} - \frac{3a}{V_{\mu}^{4}} = 0 \right] - \left[\frac{RT}{(V_{\mu} - b)^{3}} - \frac{3a}{V_{\mu}^{4}} - \frac{3a}{V_{\mu}^{$$

- * В критической точке (как точке перегиба на изотерме) первые и вторые производные равны нулю
- Для критической точки справедливы три уравнения:

$$\begin{bmatrix}
 p_{K} = \frac{RT_{K}}{V_{K} + b} - \frac{a}{V_{K}} \\
 \hline
 2a & RT_{K} \\
 \hline
 V_{K} = 3b
\end{bmatrix}$$

$$\Rightarrow D_{K} = \frac{a}{27b^{2}}$$

$$\Rightarrow D_{K} = \frac{a}{27b^{2}}$$

$$\Rightarrow D_{K} = \frac{a}{27b^{2}}$$

$$\Rightarrow D_{K} = \frac{a}{27b^{2}}$$

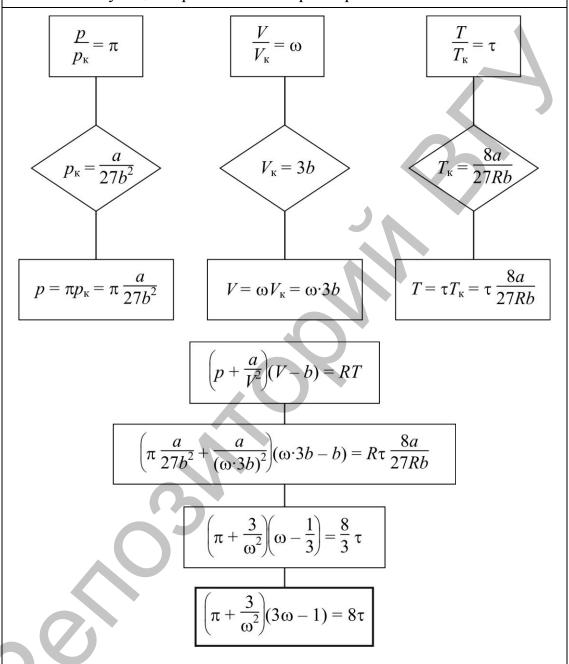
$$\Rightarrow D_{K} = \frac{B_{K}}{3} = \frac{T_{K}R}{8p_{K}}$$

$$\Rightarrow R = \frac{8p_{K}V_{K}}{3T_{K}} **$$

**R — индивидуальная газовая постоянная (используется при анализе явлений вблизи критического состояния)

Приведенное уравнение Ван-дер-Ваальса

• Приведенные параметры – отношение параметров состояния газа к соответствующим критическим параметрам

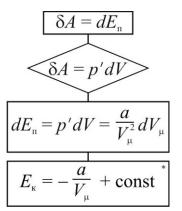


- Уравнение не содержит постоянных, которые характеризуют отдельный газ
- Закон соответственных состояний: если вещества обладают двумя одинаковыми параметрами из трех, то и третий параметр также одинаков для трех этих веществ

Внутренняя энергия реальных газов

Учет потенциальной энергии взаимодействия молекул

• Работа, совершаемая при расширении газа против сил взаимного притяжения молекул друг к другу, равна приращению энергии взаимодействия



Полная внутренняя энергия

• Для одного моля реального газа

Энергия слагается из внутренней энергии молекул и кинетической энергии движения центра масс молекул, в сумме равной $C_{\mu V}T$, и из потенциальной энергии взаимного притяжения молекул

$$U_{\mu} = f(T) - \frac{a}{V_{\mu}}$$

$$f(T) = C_{\mu \nu}T$$

$$U_{\mu} = C_{\mu \nu}T - \frac{a}{V_{\mu}}$$

• Для произвольной массы газа

$$U = \frac{m}{\mu} \left(C_{\mu V} T - \frac{a}{V_{\mu}} \right)$$

 $C_{\mu V}$ — средняя молярная теплоемкость при $V=\ {
m const}\ {
m B}\ {
m untreps}$ интервале от $0\ {
m do}\ T$

Фазовые переходы

Фазовые переходы первого рода

Процессы испарения и конденсации

Процессы плавления и кристаллизации

• Характеризуется тем, что при их осуществлении поглощается или выделяется теплота

Уравнение Клапейрона-Клаузиуса

• Зависимость изменения давления dp от температуры dT фазового перехода при теплоте перехода L и объемах фаз V_1 и V_2

$$\frac{dp}{dT} = \frac{L}{T(V_2 - V_1)}$$

$$\frac{dp}{dT} = \frac{\lambda}{T(V_{\Pi} - V_{\aleph})}$$

$$\frac{dp}{dT} = \frac{q}{T(V_{\text{\tiny K}} - V_{\text{\tiny TB}})}$$

• Испарение:

 λ — уд. теплота парообразования $V_{\rm n}$ — уд. объем насыщающих паров при температуре T

 $V_{\mathrm{ж}}$ – уд. объем жидкости

• Плавление:

q — уд. теплота плавления $V_{\rm ж}$ — уд. объем жидкой фазы $V_{\rm \tiny TB}$ — уд. объем твердой фазы

T — температура плавления

Фазовые переходы второго рода

- Отличаются от фазовых переходов первого рода тем, что в них нет теплоты перехода
- Происходит скачок теплоемкости и изменения других физических свойств
- Примеры:
 - переход железа через точку Кюри (железо теряет или приобретает магнитные свойства. Процесс сопровождается изменением теплоемкости)
 - жидкий Гелий-II (характеризуется очень малой вязкостью)

Поверхностное натяжение

Каждая молекула испытывает притяжение со стороны всех соседних с ней молекул, находящихся в пределах сферы молекулярного действия, центр которых совпадает с данной молекулой. На каждую молекулу будет действовать сила, направленная внутрь жидкости. Величина этой силы растет в направлении от внутренней к наружной границе слоя и называется силой поверхностного натяжения. Направлена эта сила по касательной к поверхности жидкости, перпендикулярно к участку контура, на который она действует

коэффициент поверхностного натяжения

• Сила поверхностного натяжения, приходящаяся на единицу длины контура

$$\alpha = \frac{F}{l}$$
, H/M

- Коэффициент также измеряется поверхностной энергией, которой обладает каждая единица площадки *S* поверхности жидкости
- С повышением температуры различие в плотностях жидкости и её насыщенного пара уменьшается, следовательно уменьшается и коэффициент поверхностного натяжения. При критической температуре обращается в нуль

поверхностная энергия

• Добавочная энергия, которую имеют молекулы, лежащие в поверхностном слое жидкости по сравнению с другими молекулами внутри жидкости

При изменении площади пленки на ΔS совершается работа:

$$A = \alpha \Delta S = \frac{F}{l} \Delta S$$

$$A = \Delta E = \alpha \Delta S$$

добавочное давление, вызванное кривизной поверхности жидкости

• Формула Лапласа:

$$\Delta p = \alpha \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

 R_1 , R_2 — радиусы кривизны двух взаимно перпендикулярных сечений поверхности жидкости

• центр кривизны находится внутри жидкости (*выпуклый мениск*)

$$R > 0 \Rightarrow \Delta p > 0$$

• центр кривизны находится вне жидкости (*вогнутый мениск*)

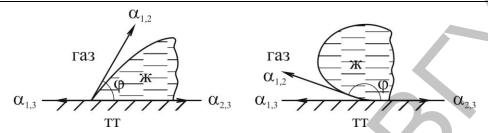
$$R < 0 \Rightarrow \Delta p < 0$$

 $\bullet \quad R_1 = R_2 = R$

$$\Delta p = \alpha \, \frac{2}{R}$$

Капиллярные явления

• Если граничат друг с другом три тела (жидкость, твердое тело и газ), система принимает конфигурацию, соответствующую минимуму свободной энергии. Вдоль контура имеет место уравновешивание трех поверхностных натяжений



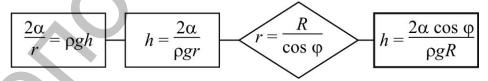
 $\alpha_{1,2}$ – газ – жидкость, $\alpha_{2,3}$ – жидкость – твердое тело, $\alpha_{1,3}$ – газ – твердое тело

• ϕ – *краевой угол* – угол между касательными к поверхности твердого тела и жидкости в точке касания их границ (отсчитывается через область, занятую жидкостью)

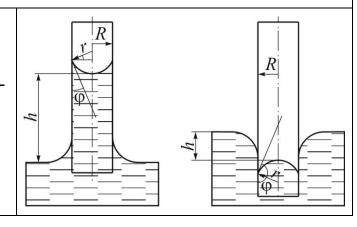
φ <	смачивание жидкостью поверхности твердого тела
$\varphi = 0$	полное смачивание
φ>	жидкость не смачивает твердое тело
$\phi = \pi$	полное несмачивание (жидкость отделяется от твердого тела)

Под действием давления, вызванного кривизной поверхности, жидкость, заполняющая капилляр, поднимается или опускается по капилляру в зависимости от смачивания или несмачивания.

• Давление Лапласа уравновешивается гидростатическим:



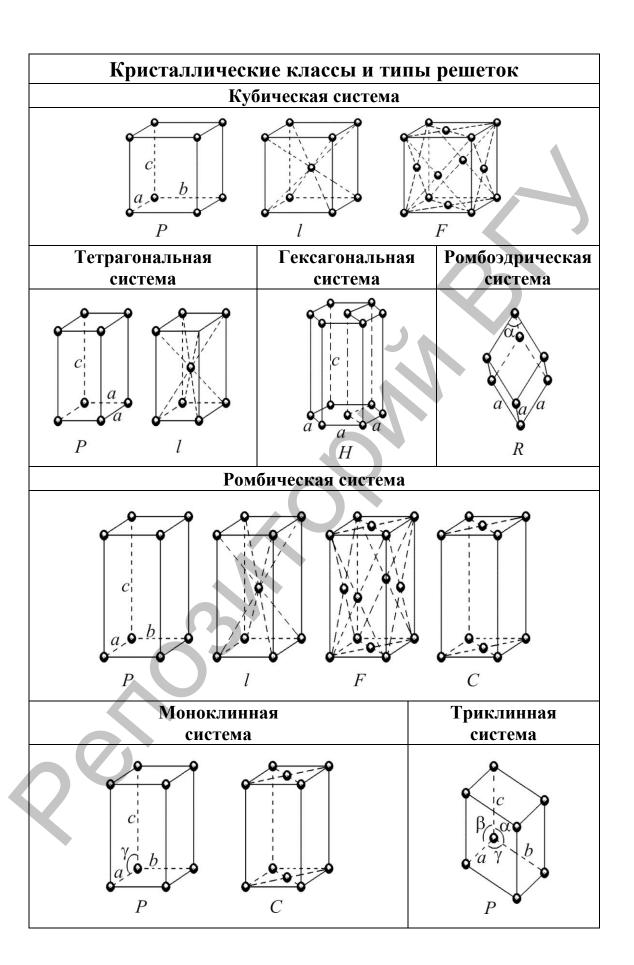
- r радиус кривизны
- R радиус капилляра
- h высота поднятия жидкости в капиллярных трубках
- ρ плотность жидкости
- ф краевой угол



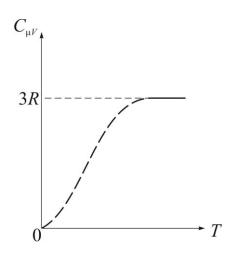
Кристаллические решетки

- Элементарная ячейка наименьшая часть решетки, отображающая структуру всего кристаллического тела (параллелепипед с ребрами Π_1 , Π_2 , Π_3 вместе с атомами в его вершинах)
- <u>Узлы кристаллической решетки</u> точки равновесия составляющих кристалл атомов, молекул или ионов
- <u>Параметры (постоянные) решетки</u> межатомные расстояния в направлении координатных осей (специальная система координат связана с кристаллом так, что координатные оси параллельны или перпендикулярны осям симметрии, а начало координат совпадает с одним из узлов решетки)
- <u>Индексы Миллера</u> пользуются для обозначения плоскостей и направлений в кристалле

Характеристики кристаллических систем			
Кристаллическая система	Соотношение ребер элементарной ячейки	Соотношение между углами в элементарной ячейке	
Триклинная	$a_1 \neq a_2 \neq a_3$	$\alpha \neq \beta \neq \gamma$	
Моноклинная	$a_1 \neq a_2 \neq a_3$	$\alpha = \beta = 90^{\circ} \neq \gamma$	
Ромбическая	$a_1 \neq a_2 \neq a_3$	$\alpha = \beta = \gamma = 90^{\circ}$	
Тетрагональная	$a_1 = a_2 \neq a_3$	$\alpha = \beta = \gamma = 90^{\circ}$	
Кубическая	$a_1 = a_2 = a_3$	$\alpha = \beta = \gamma = 90^{\circ}$	
Ромбоэдрическая	$a_1 = a_2 = a_3$	$lpha=eta=\gamma$, но $<120^\circ$ и $ eq90^\circ$	
Гексагональная	$a_1 = a_2 \neq a_3$	$\alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$	



Классическая теория теплоемкости твердых тел



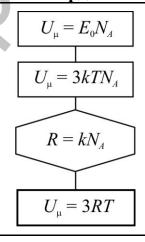
- Атомы имеют поступательноколебательные степени свободы $(i = i_{\Pi} + i_{K} = 3 + 3 = 6)$
- На каждую степень свободы приходится энергия колебания kT (состоит из кинетической kT/2 и потенциальной kT/2, равных между собой при гармонических колебаниях)
- $C_{\mu V} \approx C_{\mu p} \approx C_{\mu}$: объемы твердого тела при нагревании меняются мало и теплоемкости $C_{\mu p}$ и $C_{\mu V}$ отличаются незначительно, так что можно говорить просто о молярной теплоемкости твердого тела

Энергия колебания одного атома

Закон о равнораспределении энергии на 1 степень свободы: каждый осциллятор обладает энергией колебания kT, которая состоит из кинетической kT/2 и потенциальной kT/2. Следовательно, для одного атома

$$E_0 = 3kT$$

Внутренняя энергия моля твердого тела

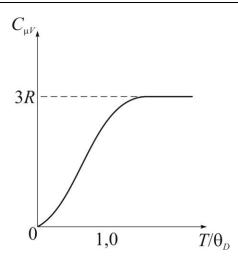


• Молярная теплоемкость твердого тела

$$C_{\mu} = C_{\mu V} = \left(\frac{dU_{\mu}}{dT}\right)_{V} = 3R = 24,94 \frac{Дж}{моль \cdot K}$$

- \bullet Закон Дюлонга и Пти: молярная теплоемкость всех химически простых кристаллических твердых тел при достаточно высокой температуре равна 3R
- Недостатки классической теории теплоемкости твердых тел:
 - не объясняет температурной зависимости теплоемкости кристаллов
 - не учитывает наличие в кристаллах свободных электронов и их влияние на теплоемкость

Основные представления квантовой теории теплоемкости



- Скорость распространения тепловых волн совпадает со скоростью звука
- Энергия тепловых волн квантована. Квант звуковой энергии называется фононом. Энергия фонона

$$\varepsilon = h\nu$$

h — постоянная Планка

v – частота колебаний

- Дискретность тепловых волн проявляется при температуре ниже характеристической температуры Дебая θ_D
- Внутренняя энергия твердого тела при температурах, близких к абсолютному нулю

$$U_{\mu} = aT^4$$

а – постоянный множитель, зависящий от природы кристалла

• Молярная теплоемкость твердого тела

$$C_{\mu\nu} = \frac{dU_{\mu}}{dT} = 4aT^{3}$$

$$\theta_{D} = \frac{h\nu_{\text{max}}}{k}$$

$$C_{\mu\nu} = C = \frac{12\pi^{4}R}{5} \left(\frac{T}{\theta_{D}}\right)^{3} = 234R \left(\frac{T}{\theta_{D}}\right)^{3}$$

 u_{max} – максимальная частота тепловых колебаний, свойственных данному телу

k – постоянная Больцмана

R – универсальная газовая постоянная

- <u>Закон *T*³ Дебая</u>: вблизи абсолютного нуля молярная теплоемкость твердого тела пропорциональна кубу абсолютной температуры
- Область применения закона лежит ниже температуры равной $\theta_D/50$

Литература

- 1. И.К. Кикоин, А.К. Кикоин. Молекулярная физика. М., 1976. 500 с.
- 2. А.Н. Матвеев. Молекулярная физика. M., 1981. 400 c.
- 3. И.В. Савельев. Курс общей физики. M., 1983. 432 c. T. 1.
- 4. Д.В. Сивухин. Общий курс физики. M., 1979. 552 c. T. 2.
- 5. P.B. Телеснин. Молекулярная физика. M., 1973. 300 c.
- 6. Т.И. Трофимова. Физика. Справочник с примерами решения задач. М., 2008. 448 с.
- 7. В.Ф. Яковлев. Теплота и молекулярная физика. М., 1976. 320 с.

Учебное издание

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА В ТАБЛИЦАХ

Пособие

Авторы-составители: ЯКОВЛЕВ Виталий Петрович КОРШИКОВ Федор Павлович ГРИГОРОВИЧ Анастасия Леонидовна СЕМЕНОВА Диана Александровна

Печатается в авторской редакции

 Технический редактор
 Г.В. Разбоева

 Компьютерный дизайн
 Т.Е. Сафранкова

Подписано в печать 2011. Формат $60x84^{1}/_{16}$. Бумага офсетная.

Усл. печ. л. 2,96. Уч.-изд. л. 3,06. Тираж экз. Заказ

Издатель и полиграфическое исполнение — учреждение образования «Витебский государственный университет им. П.М. Машерова». ЛИ № 02330 / 0494385 от 16.03.2009.

Отпечатано на ризографе учреждения образования «Витебский государственный университет им. П.М. Машерова». 210038, г. Витебск, Московский проспект, 33.